簡易檢索 / 詳目顯示

研究生: 李家緯
Lee, Chia-Wei
論文名稱: 以磁控濺鍍法製作之金屬氧化物薄膜特性及其氣體感測之應用
Investigation of Metal Oxide Thin Films Fabricated by RF Sputtering System and Their Gas Sensing Applications
指導教授: 張守進
Chang, Shoou-Jinn
共同指導教授: 陳志方
Chen, Jone-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 77
中文關鍵詞: 氧化鋅鈦銦氣體感測器三端氣體感測器
外文關鍵詞: InTiZnO, Gas sensor, Three-terminal gas sensor
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用射頻磁控濺鍍法沉積非晶型氧化鋅鈦銦薄膜,並討論在不同製程條件下薄膜的特性,接著將薄膜應用於氣體感測器與紫外光活化感測器,進而分析薄膜參數對氣體反應特性之影響。現有的相關研究多著重於量測時導電率的變化,我們希望以理論更加深入地探討氣體感測的相關機制。另一方面,本研究也利用先前完成之非晶型氧化銦鎵鋅薄膜電晶體,來探討閘極偏壓與氣體感測行為間的關係。
    第一部分我們用磁控濺鍍的方式在不同氧分壓的製程條件下進行薄膜沉積,並分別探討氧化鋅鈦銦薄膜其光學特性、薄膜表面/縱深結構分析與薄膜組成分析。在光學特性方面,結果顯示薄膜在可見光區有80%以上的高穿透率,而換算能隙後約為4eV,是一寬能隙材料。在薄膜表面/縱深結構分析結果方面,氧化鋅鈦銦薄膜因使用磁控濺鍍而沉積得相當均勻且呈現非晶型態,利用AFM表面分析可以看出薄膜表面粗糙度會受到製程中氧流量影響; 薄膜組成分析上,我們藉由X射線光電子能譜(XPS)也可以發現,薄膜中的氧空缺會因為製程中的氧流量越大而逐漸減少。
    在實驗的第二部分,我們將氧化鋅鈦銦薄膜應用於氣體感測器來檢測乙醇、丙酮、異丙醇、一氧化碳以及二氧化硫等氣體,透過改變濺鍍氧通量與指叉狀上電極之金屬材料來比較其對於氣體感測特性的影響,並利用紫外光照射活化降低操作溫度。當氧流量提高時,基於化學吸附理論、缺陷理論與表面粗糙度的提升,元件氣體感測靈敏度也隨之提高,其中在氧分壓10%製作下的元件對於500ppm的乙醇響應更高達2000%以上,並擁有良好的選擇性及再現性。當選擇電極材料時,由於蕭特基接觸與能障的影響,越低的金屬功函數(大於薄膜能隙4eV),會使得元件氣體感測響應值提高,其中金屬電極為鎳/金結構的元件由於功函數最低再加上金的催化,其對於氣體感測的響應最高。此外,我們也探討氧化鋅鈦銦氣體感測器於紫外光照射活化之下所造成的影響,經由紫外光照射後的元件均能有效將操作溫度由300°C降低至150°C。
    實驗的最後,我們利用先前完成之濺鍍氧流量1%的氧化銦鎵鋅薄膜電晶體,以實現三端量測氣體感測器,透過改變閘極偏壓來控制其對乙醇的響應值並且討論該元件對氣體反應特性的影響。

    In this thesis, indium titanium zinc oxide (InTiZnO) thin films are prepared by RF magnetron sputtering system and their film properties are discussed thoroughly under different processing ambiences. Then we will apply the InTiZnO thin films to fabricate gas sensing applications. On the other hand, we utilize the Indium gallium zinc oxide (IGZO) thin film transistors (TFTs) to realize a FET gas sensor. Most of the previous research just focus on the variation of conductivity. In this study, we will investigate the factors that influence the surface reactions and also discuss the parameters of gas sensing mechanism in detail.
    In the first part of the experiment, InTiZnO films are deposited under different oxygen partial pressure ratio and investigate into optical, surface/depth and element analysis. From the optical analysis, the transmittance in the visible region can achieve more than 80% and the corresponding energy bandgap is about 4eV. In the surface/depth structural analysis results, the InTiZnO thin films are uniformly deposited by sputtering and exhibit an amorphous state. It can be seen from the AFM analysis that the surface roughness of the film is affected by the oxygen flow during the process. We can also find that the oxygen vacancies in the film are reduced due to the increase of oxygen flow by XPS.
    In the second part of the experiment, InTiZnO gas sensors are fabricated to detect harmful gases such as ethanol, acetone, isopropanol, carbon monoxide, and sulfur dioxide. We will discuss their gas sensing properties by changing the oxygen flow ratio and the metal materials of the interdigitated electrodes. Besides, we will use UV irradiation to reduce the operating temperature. When the oxygen flow ratio increases, based on chemical adsorption model, defect theory and surface roughness, the sensitivity of the device also increases. Among them, the device fabricated under 10% oxygen partial pressure has the highest sensitivity, which is over 2000% and with good selectivity and reproducibility. When selecting the electrode materials, the lower metal work function will increase the gas sensing response because of the Schottky contact and its barrier height. Therefore, the device with Ni/Au electrode has the highest responsivity due to the lowest work function and catalysis by gold. In addition, we can effectively reduce the operating temperature from 300°C to 150°C by utilizing the UV irradiation.
    At last, we have demonstrated three-terminal gas sensing with Indium gallium zinc oxide (IGZO) thin film transistors. The gate bias change is used as a sensing parameter to detect ethanol vapor.

    Abstract (Chinese) I Abstract (English) III Contents V Table Captions VIII Figure Captions IX Chapter 1. Introduction 1 1.1 Background and Motivation 1 1.2 Background of InTiZnO Material 2 1.3 Overview of Thin Film Transistor 3 1.4 Overview of Gas Sensor 4 1.5 Organization of This Thesis 6 Chapter 2. Relevant Theory and Experimental Equipment 8 2.1 Theory of Gas Sensor 8 2.2 Responsivity of the Gas Sensor 10 2.3 Metal-Semiconductor (MS) Contacts 10 2.4 Theory of Photo-Induced Electron-Hole Pairs 12 2.5 Theory of Thin Film Transistor 14 2.6 Experimental Equipment 15 2.6.1 RF Sputtering System 16 2.6.2 E-beam Evaporation System 18 2.6.3 Atomic Force Microscopes (AFM) 20 2.6.4 X-ray Diffraction Analysis (XRD) 21 2.6.5 X-ray Photoelectron Spectroscopy (XPS) 23 Chapter 3. Characteristics of InTiZnO Thin Film 25 3.1 Growth of InTiZnO Thin Film Sample 25 3.2 Structural Characteristics 27 3.2.1 XRD Analysis and Diffraction Pattern Analysis. 27 3.2.2 AFM and TEM Analysis 29 3.3 Optical Characteristics 31 3.4 Elemental Analysis 33 3.4.1 XPS Analyses. 34 3.4.2 EDS Analysis 35 Chapter 4. Fabrication and Characteristics of InTiZnO SMO Gas Sensor 36 4.1 Fabrication of InTiZnO SMO Gas Sensor 36 4.1.1 Measurement Setup. 37 4.1.2 Conductivity Change of the Metal Oxide Thin Film 38 4.2 Characteristics of InTiZnO Gas Sensor with Different Oxygen Flow 40 4.3 Characteristics of InTiZnO Gas Sensor with Different Electrode Metal .49 4.4 UV Light-Activated on InTiZnO Gas Sensor 52 4.5 The Summary of InTiZnO SMO Gas Sensor 57 Chapter 5. Fabrication and Characteristics of InGaZnO Gas Sensor Based on Bottom Gate Thin Film Transistor 59 5.1 Fabrication and Measurement of InGaZnO TFT 59 5.2 Characteristics of the InGaZnO TFT Gas Sensor 62 5.3 The Summary of InGaZnO TFT Gas Sensor 65 Chapter 6. Conclusion and Future Work 66 6.1 Conclusion 66 6.2 Future Work 68 References 70

    [1] N. Barsan, U. Weimar, “Conduction model of metal oxide gas sensors,” Journal of Electroceramics, vol. 7, pp. 143–167, 2001.
    [2] G. Korotcenkov, “Metal Oxides for Solid-State Gas Sensors: What Determines Our Choice?” Mater. Sci. Eng. B, vol. 139, pp. 1-23, 2007.
    [3] G. Korotcenkov, “The Role of Morphology and Crystallographic Structure of Metal Oxides inResponse of Conductometric-Type Gas Sensors.” Mater. Sci. Eng. R 61, pp. 1-39, 2008.
    [4] A. M. Khoviv, T. A. Myachina, E. G. Goncharov, V. A. Logacheva, and E. V. Kasatkina, “Effect of vacuum annealing on the phase composition of In/SnO/Si, In/SnO2/Si and Sn/In2O3/Si heterostructures”, Inorg. Mater., vol. 42, no. 2, pp. 108-111, 2006.
    [5] J. L. Zhao, and X. M. Lib, “Study on anomalous high p-type conductivity in ZnO films on silicon substrate prepared by ultrasonic spray pyrolysis”, Appl. Phys. Lett., vol. 90, pp. 062118-1, 2007.
    [6] J. Hu and R. G. Gordon, "Textured aluminum‐doped zinc oxide thin films from atmospheric pressure chemical‐vapor deposition," Journal of Appl. Phys., vol. 71, pp. 880–890, 1992.
    [7] M. Batzill, U. Diebold, “The Surface and Materials Science of Tin Oxide.” Prog. Surf. Sci., vol. 79, pp. 47-154, 2005.
    [8] C. M. Liu, W. L. Liu, W. J. Chen, S. H. Hsieh, T. K. Tsai, and L. C. Yang, “ITO as a Diffusion Barrier between Si and Cu.” J. Electrochem. Soc., vol. 152, pp. 234, 2005.
    [9] D. H. Yoon, J. H. Yu, G. M. Choi, “CO Gas Sensing Properties of ZnO-CuO Composite.” Sens. Actuat. B, vol. 46, pp. 15-23, 1998.
    [10] M. Righettoni, A. Tricoli, and S. E. Pratsinis, “Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis.” Anal. Chem., vol. 82, pp. 3581, 2010.
    [11] C. C. Liu, J. H. Li, C. C. Chang, Y. C. Chao, H. F. Meng, S. F. Horng, C. H. Hung, and T. C. Meng, “Selective real-time nitric oxide detection by functionalized zinc oxide.” J. Phys. D: Appl. Phys., vol. 42, pp. 155105, 2009.
    [12] T. Minami and T. Miyata, "Present status and future prospects for development of non- or reduced-indium transparent conducting oxide thin films," Thin Solid Films, vol. 517, pp. 1474–1477, 2008.
    [13] V. Shelke, B. K. Sonawane, M. P. Bhole, and D. S. Patil, "Effect of annealing temperature on the optical and electrical properties of aluminum doped ZnO films," J. Non-Cryst. Solids, vol. 355, pp. 840–843, 2009.
    [14] K.I. Lee, E. K. Kim, H.D. Kim, H.I. Kang, and J.T. Song, "Low temperature Al doped ZnO films on a flexible substrate by DC sputtering," Phys. Stat. Sol. (c), vol. 5, pp. 3344–3347, 2008.
    [15] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol., vol.20, pp. S35–S44, 2005.
    [16] Y. Zhang, J. He, Z. Ye, L. Zhou, J. Huang, L. Zhu, B. Zhao, “Structural and photoluminescence properties of Zn0.8Mg0.2O thin films grown on Si substrate by pulsed laser deposition,” Thin Solid Films, vol. 458, pp. 161–164, 2004.
    [17] J. H. Lee, S. Y. Lee, B. O. Park, “Fabrication and characteristics of transparent conducting In2O3-ZnO thin films by ultrasonic spray pyrolysis,” Mater. Sci. Eng., B, vol. 127, pp. 267–271, 2006.
    [18] S. T. Shishiyanu, Teodor S. Shishiyanu, Oleg I. Lupan, “Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor,” Sens. Actuators, B, vol. 107, pp. 379–386, 2005.
    [19] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.” Nature, vol. 432(7016), pp. 488-492, 2004
    [20] M. Ito, C. Miyazaki, M. Ishizaki, M. Kon, N. Ikeda, T. Okubo and N. Sekine, “Application of amorphous oxide TFT to electrophoretic display.” Journal of Non-Crystalline Solids, vol. 354(19), pp. 2777-2782, 2008.
    [21] T. Kamiya, and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors.” NPG Asia Materials, vol. 2(1), pp. 15-22, 2010
    [22] K. Nomura, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O 2 annealing.” Applied Physics Letters, 93(19), 192107, 2008
    [23] A. Kuo, T. K. Won, and J. Kanicki, “Advanced multilayer amorphous silicon thin-film transistor structure: Film thickness effect on its electrical performance and contact resistance.” Japanese Journal of Applied Physics, 47(5R), 3362, 2008
    [24] P.B. Weise, “Effect of electronic charge transfer between adsorbate and solid on chemisorption and catlysis,” J. Chem. Phys., vol2, pp.1531-1538, 1953
    [25] 薛永浚, “不同升溫條件對真空蒸鍍熱氧化法製備氧化鎵薄膜型態及感測特性之研究”, 國立成功大學碩士論文, 2006.
    [26] E. H. Rhoderick, R. H. Williams. (1998). “Met-Semiconductor Contacts, Clarendon Press.” Oxford.
    [27] S. M. Sze, “Semiconductor Device Physics and Technology”, pp. 160, 1985
    [28] J. D. Plummer, M. D. Deal, and P.B. Griffin, “Silicon VLSI Technology”, Prentice Hall, London, United Kingdom (2000).
    [29] Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors, vol. 9, pp. 6504–6529, 2009.
    [30] D. C. Reynolds, D. C. Look, B. Jogai, C.W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, “Neutral-donor–bound-exciton complexes in ZnO crystals,” Phys. Rev. B, vol. 57, pp. 12151–12155, 1998.
    [31] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, “AlxGa1-xN:Si Schottky barrier photodiodes with fast response and high detectivity,” Appl. Phys. Lett., vol. 73, pp. 2146–2148, 1998.
    [32] Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3/e. New York: McGraw-Hill, 2003.
    [33] J. L. Vossen and W. Kern, Thin Flim Processes. New York: Academic Press, 1978.
    [34] https://en.wikipedia.org/wiki/Electron_beam_physical_vapor_deposition
    [35] H. S. Bae, J. H. Kwon, S. Chang, M. H. Chung, T. Y. Oh, J. H. Park, and B. K. Ju, “The effect of annealing on amorphous indium gallium zinc oxide thin film transistors.” Thin Solid Films, 518(22), pp. 6325-6329, 2010
    [36] C. Y. Chang and S. M. Sze, ULSI Technology. New York: McGraw-Hill, 1996.
    [37] Ide, K., Kikuchi, Y., Nomura, K., Kimura, M., Kamiya, T., & Hosono, H. “Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors.” Applied Physics Letters, 99(9), 093507, 2011
    [38] J. Goldstein, "Scanning Electron Microscopy and X-ray Microanalysis.” New York: John Wiley and Sons Inc., 2003.
    [39] Wei-Ting Wu, “Investigation of Indium Titanium Zinc Oxide Thin Film Transistors Fabricated by RF Sputtering System and Their Optoelectronic Application.” NCKU, 2016
    [40] D. J. Yang, G. C. Whitfield, N. G. Cho, P. S. Cho, I. D. Kim and H. L. Tuller, “Amorphous InGaZnO4 films: Gas sensor response and stability,” Sensors and Actuators B, pp. 171-172, 2012
    [41] C. L. Hsu, L. F. Chang, T. J. Hsueh, “Light-activated humidity and gas sensing by ZnO nanowires grown on LED at room temperature.” Sensors and Actuators B, vol.249, pp. 265–277, 2017
    [42] C. X. Wang, L. W. Yin, L. Y. Zhang, D. Xiang and R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors.” Sensors, vol. 10, pp. 2088-2106, 2010.
    [43] R. Dhahri, M. Hijiri, L. E. Mir, A. Banavita, D. lannazzo, M. Latino, N. Donato and G. Neri, “Gas sensing properties of Al-doped ZnO for UV-activated CO detection.” J. Phys. D: Appl. Phys. 49, 135502 (7pp), 2016
    [44] H. Cheng, Y. Liu, C. S. Xie, J. Wu, D. W. Zheng, Y. C. Liao, “A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature.” Ceramics International, vol. 38, pp. 503–509, 2012.
    [45] Y. Gui, S. Li, J. Xu, C. Li, “Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature.” Microelectronics Journal, vol. 39, pp. 1120–1125, 2008.
    [46] J. Gong, T. Li, X. Zhai, Z. Hu and Y. deng, “UV-Light-Activated ZnO Fibers for Organic Gas Sensing at Room Temperature.” J. Phys. Chem. C, vol. 114, pp. 1293–1298, 2010.
    [47] M. Hjiri, L. E. Mir, S. G. Leonardi, A. Pistone, L.Mavilia and G. Neri, “Al-doped ZnO for highly sensitive CO gas sensors.” Sensors and Actuators B, vol. 196, pp. 413–420, 2014.
    [48] E. Comini, G. Faglia and G. Sberveglier, “UV Light activation of tin oxide thin films for NO2 sensing at low temperatures.” Sensors and Actuators B, vol. 78, pp. 73-77, 2001.
    [49] H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. Wen, H. Fam, A. I. Y. Tok, Q. Zhang, and Hua Zhang, “Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature.” Small, vol. 8, pp. 63-67, 2012
    [50] L. K. Yeh, J. C. Luo, M. C. Chen, “A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostruture Arrays.” Sensors (Basel, Switzerland), 16(11): 1820, 2016
    [51] K. L. Chen, G. J. Jiang, K. W. Chang, J. H. Chen and C. H. Wua, “Gas sensing properties of indium–gallium–zinc–oxide gas sensors in different light intensity.” Analytical Chemistry Research, vol. 4, pp. 8-12, 2015.
    [52] D. Late, Y. K. Huang, B. Liu, J. Acharya, S. N. Shirodkar and J. Luo et al., "Sensing behavior of atomically thin-layered MoS2 transistors," Acs Nano, vol. 7, no. 6, pp. 4879-4891, 2013
    [53] Zan, H. W., Li, C. H., Yeh, C. C., Dai, M. Z., Meng, H. F., and Tsai, C. C., “Room-temperature-operated sensitive hybrid gas sensor based on amorphous indium gallium zinc oxide thin-film transistors.” Applied Physics Letters, 98(25), 2011
    [54] S. Dutta and A. Dodabalapur, “Zinc tin oxide thin film transistor sensor”, Sensors and Actuators B, vol. 143, pp. 50-55, 2009.
    [55] Liu, G.; Rumyantsev, S. L.; Jiang, C.; Shur, M. S.; Balandin, A. A. “Selective Gas Sensing With h-BN Capped MoS2 Heterostructure Thin-Film Transistors.” IEEE Electron Device Lett., vol. 36, pp. 1202− 1204, 2015.
    [56] L. Torsi, A. Dodabalapur, L. Sabbatini, P.G. Zambonin, “Multi-parameter gas sensors based on organic thin-film-transistors” Sensors and Actuators B, vol. 67, pp. 312, 2000.
    [57] Chen H, Jiang W, Zhu L, Yao Y. “Amorphous In–Ga–Zn–O Powder with High Gas Selectivity towards Wide Range Concentration of C2H5OH.” Sensors (Basel, Switzerland), 17(6):1203, 2017.
    [58] K. W. Kao, M. C. Hsu, Y. H. Chang, S. Gwo and J. Andrew Yeh, “A Sub-ppm Acetone Gas Sensor for Diabetes Detection Using 10 nm Thick Ultrathin InN FETs.” Sensors, vol. 12, pp. 7157-7168, 2012.

    無法下載圖示 校內:2023-06-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE