簡易檢索 / 詳目顯示

研究生: 陳泰豪
Chen, Tai-How
論文名稱: 低溫共燒型介電-磁性陶瓷複合材料
Low-Temperature co-fired dielectric-magnetic ceramic composite
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: 磁性複合材料微波介電
外文關鍵詞: composite, magnetic, microwave dielectric
相關次數: 點閱:63下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於同時擁有優異磁及介電性質之複合材料可製作低成本、高性能之高頻複合式L/C EMI 濾波器,近年來已引起學者廣泛之研究。因此本研究選擇添加20 mole%的Bi成份於BaO.Nd2O3.4TiO2系統,並加入含有不同Bi成份比例之玻璃助燒結劑來達到低溫燒結之效果,並探討玻璃助燒結劑中之Bi成份在BaO.Nd2O3.4TiO2系統中所產生之影響。研究結果顯示添加20wt%之BB25SZ玻璃助燒結劑 (B-Bi-Si-Zn glass) 於BNBT (BaO.(Nd0.8Bi0.2)2O3.4TiO2) 樣品,可在900°C, 2h燒結緻密化,並擁有優異之介電性質。此外將上述之微波介電材料粉末與NiCuZn鐵氧磁體粉末進行複合,並添加適量之玻璃助燒結劑,即可在900°C, 2h燒結緻密化,並同時具有優異之介電與磁性質。

    Recently, composite materials with both superior dielectric and magnetic properties can be used to produce a low cost and high performance L/C EMI filter for high frequency application. Therefore this composite material had attracted much attention. A high dielectric constant material, Bi-added BaO-Nd2O3-4TiO2, was chosen as the raw material for the present work. Moreover, a glass system was selected to be added to Bi-added BaO-Nd2O3-4TiO2 system to decrease the sintering temperature. The effects of various glasses addition on both the sintering behavior and dielectric properties were investigated. The results revealed that BNBT (BaO.(Nd0.8Bi0.2)2O3.4TiO2) with 20wt% BB25SZ (B-Bi-Si-Zn glass) could be densified at 900oC for 2h, which possess excellent dielectric properties. Furthermore, the above dielectric was mixed with different amount of NiCuZn ferrites to form dielectric-magnetic composites. With appropriate glass addition, the composites sintered at 900oC for 2h exhibited both superior dielectric and magnetic properties.

    目錄 摘要 i Abstract ii 目錄 iii 表目錄 v 圖目錄 vi 第一章 緒論 1 1-1 前言 1 1-2 研究方向及目的 2 第二章 前人研究及理論基礎 4 2-1 微波通訊材料 4 2-2 鎢青銅礦Ba6-3xR8+2xTi18O54成份系統之晶體結構與電性質 8 2-2-1 添加劑之效果 13 2-3 介電性質 17 2-3-1 介電常數 17 2-3-2 品質因子 20 2-3-3 共振頻率之溫度係數 22 2-4 液相燒結 23 2-4-1 接觸角(contact angle) 25 2-4-2 溶解度之影響 27 2-5 陶瓷複合粉末 30 第三章 實驗方法及步驟 34 3-1 起始原料 34 3-2 粉末及燒結體製備 34 3-2-1 微波介電粉末製備 34 3-2-2 複合粉末製備 38 3-2-3 粉末之熱重/熱差分析 38 3-2-4 微波介電燒結體製備 38 3-2-5 複合材料燒結體製備 39 3-3 材料特性分析 39 3-3-1燒結收縮曲線及密度 39 3-3-2 相鑑定 41 3-3-3 顯微結構觀察 41 3-3-4 潤濕角及介面反應之量測 43 3-4 材料性質量測 44 3-4-1 微波介電燒結體電性質量測之樣品準備 44 3-4-2 微波介電性質量測 44 3-4-3 複合材料電性及磁性質之量測 45 第四章 結果與討論 47 4-1 微波介電鎢青銅礦BaO.(Nd0.8Bi0.2) 2O3.4TiO2系統 47 4-1-1 煆燒粉末相鑑定 47 4-1-2 玻璃系統BBXSZ熔融溫度分析 47 4-1-3 潤濕角分析 49 4-1-4相鑑定 52 4-1-5玻璃助燒結劑之界面觀察 53 4-1-6 燒結收縮曲線及密度分析 56 4-1-7 顯微結構觀察 58 4-1-8 穿透式電子顯微鏡分析 61 4-1-9 微波介電性質 67 4-2 陶瓷複合材料 71 4-2-1 燒結收縮曲線分析 71 4-2-2 燒結體密度分析 71 4-2-3 顯微結構觀察 75 4-2-4 相鑑定 76 4-2-5 介電性質 79 4-2-6 磁性質 82 第五章 結論 88 參考文獻 89 表目錄 Table 2-1 Materials used as microware resonators 7 Table 2-2 properties of some typical commercial microware ceramics 7 Table 2-3 Sintering aids of oxide 16 Table 2-4 Sintering aids of glass 16 Table 2-5 Microware dielectric properties of BaO.(Nd1-xBix)2O3.4TiO2 ceramics 16 Table 3-1 Chemical compositions and densitie of the glasses 36 Table 3-2 Weight ratio of BXNX(X = 2-8) 37 Table 3-3 The operation condition of X-Ray powder diffractometer 42 Table 4-1 A summary of the previous studies about BNBT ceramics added with various glasses and relevant dielectric properties. 70 Table 4-2 Amounts of various glasses added in the samples 74 Table 4-3 Amounts of various dielectric materials used as composites with NiCuZn ferrite 87 圖目錄 Fig. 2-1 Microwave spectrum and application...............................................................5 Fig. 2-2 Compounds in BaTiO3-R2TiO5-TiO2(R = rare earth) ternary system 9 Fig. 2-3 Eelectron density map (Fourier map) of the fundamental Ba6-3xR8+2xTi18O54 structure 10 Fig. 2-4 Tungsten-bronze type like crystal structure of the Ba6-3xR8+2xTi18O54 solid solution 10 Fig. 2-5 Variation in unit cell with x in the formula Ba6-3xNd8+2xTi18O54 12 Fig. 2-6 Variation in unit cell volume with n in the formula 12 BaO.Nd2O3.nTiO2 12 Fig. 2-7 Schematic representation of different mechanisms of polarization 18 Fig. 2-8 Frequency dependence of several contributions to the polarizability 19 Fig. 2-9 Schematic resonance peak in transmission showing 21 definition of QL 21 Fig. 2-10 The stages of liquid phase sintering involving mixed powders which form a liquid on heating 24 Fig. 2-11 The process stages associated with liquid phase sintering, give the main microsructure 24 Fig. 2-12 The solid-liquid-vapor equilibrium for good wetting (a) and poor wetting (b) situations. The relation between the contact angle and three interfacial energy is given in (c). 26 Fig. 2-13 A schematic diagram contrasting the effects of solubility on densification or swelling during sintering 29 Fig. 2-14 The distributed constant type EMI filter. 33 Fig. 3-1 Flowchart of sample BNBT preparation and material characteristic analyses 35 Fig. 3-2 Flowchart of sample BXNX preparation and material characteristic analyses 37 Fig. 3-3 Equipment of dielectric constant measuring. 46 Fig. 3-4 Equipment of quality factor measuring. 46 Fig. 4-1 X-ray diffraction patterns of the BNBT powder calcined at 1200oC 48 Fig. 4-2 DTA results of BBXSZ glass system 50 Fig. 4-3 Effects of glasses on the wetting behavior between BNBT and glass sintered at 900oC (a) BB0SZ, (b) BB25SZ, (c) BB35SZ, and 51 (d) BB45SZ. 51 Fig. 4-4 X-ray diffraction patterns of the as-calcined BNBT powder and the sintered samples with 25wt% BB0SZ as a function of sintering temperatures 54 Fig. 4-5 X-ray diffraction patterns of the as-calcined BNBT powder and the samples with various amounts of BB25SZ sintered at 900cC as a function of sintering temperatures. 54 Fig. 4-6 X-ray diffraction patterns of the as-calcined BNBT powder and the samples with various amounts of BB35SZ sintered at 900oC as a function of sintering temperatures. 55 Fig. 4-7 X-ray diffraction patterns of the as-calcined BNBT powder and the samples with 15-25wt% BB45SZ sintered at 900oC as a function of sintering temperatures 55 Fig. 4-8 Concentration profiles of the interface between BNBT ceramics and BB45SZ glass sintered at 900oC. 57 Fig. 4-9 Results of dilatometric analyses of the samples added with 25 wt% various glasses. 59 Fig. 4-10 Relative densities of the samples sintered at 900oC as a function of the amount of various glasses added. 59 Fig. 4-11 SEM microstructures of BNBT ceramics added with (a) 15wt%, (b) 20 wt%, and (c) 25 wt% BB0SZ glasses. 62 Fig. 4-12 SEM microstructures of BNBT ceramics added with (a) 15wt%, (b) 20 wt%, and (c) 25 wt% BB25SZ glasses 63 Fig. 4-13 SEM microstructures of BNBT ceramics added with (a) 15wt%, (b) 20 wt%, and (c) 25 wt% BB35SZ glasses. 64 Fig. 4-14 SEM microstructures of BNBT ceramics added with (a) 15wt%, (b) 20 wt%, and (c) 25 wt% BB45SZ glasses 65 Fig. 4-15 (a) TEM bright field image, (b) HRTEM image and selected area diffraction patterns (SADP) of S grain (c) and C grain (d) for the sample added with 20wt% BB25SZ. 66 Fig. 4-16 Effects of the various glass additions on the dielectric properties of BNBT ceramics (a) dielectric constant, (b) Qxf, and (c)TCF. 69 Fig. 4-17 Results of dilatometric analyses of the BXNX samples 72 Fig. 4-18 Relative densities of the BXNX samples sintered at 900oC and 950oC 72 Fig. 4-19 Relative densities of the BXNX samples sintered at 900oC as a function of the amount of various glasses added............................................................74 Fig. 4-20 SEM microstructures of BXNX ceramics sintered at 900oC 77 (a) B2N8 (b) 25B2N8 (c) 50B2N8 (d) 100B2N8 (e) B4N6 (f)25B4N6 77 (g) B6N4 (h) B8N2 77 Fig. 4-21 SEM microstructures of BXNX ceramics sintered at 900oC 78 (a) B2N8 (b) 25B2N8 (c) B4N6 (d) B6N4 (e) B8N2 78 Fig. 4-22 X-ray diffraction patterns of the as-calcined BNBT powder、NCZ powder and the BXNX samples sintered at 900oC as a function of sintering temperatures. 80 Fig. 4-23 X-ray diffraction patterns of the as-calcined BNBT powder 、NCZ powder and the BXNX samples sintered at 950oC as a function of sintering temperatures. 81 Fig. 4-24 Variation of dielectric as a function of frequency for BXNX samples sintered at 900oC 84 Fig. 4-25 Variation of dielectric as a function of frequency for BXNX samples sintered at 950oC 84 Fig. 4-26 Variation of initial permeability as a function of frequency for BXNX samples sintered at 900oC 85 Fig. 4-27 Variation of initial permeability as a function of frequency for BXNX samples sintered at 950oC 85

    [1] D. Suvorov, M. Valant, and D. Kolar, “The role of dopants in tailoring the microwave properties of Ba6-xR8+2/3xTi18O54 R = (La-Gd) ceramics,” J. Mater. Sci., 32, 6483, (1997)
    [2] I.S. Cho, D.W. Kim, J.R. Kim, and K.S. Hong, “Low-temperature sintering and microwave dielectric properties of BaO‧(Nd1−xBix)2O3‧4TiO2 by the glass additions,” Ceram. Inter., 30, 1181, (2004)
    [3] H. Ohaato, T. Ohhashi, S. Nishigaki, T. Okuda, K. Sumiya, and S. Suzuki, “Formation of solid solutions of new tungsten bronze-type microwave dielectric compounds Ba6-3xR8+2xTi18O54 (R = Nd and Sm, 0≦x≦1),” Jpn. J. Appl. Phys., 32, 4323, (1993)
    [4] R. Ubic, I.M. Reaney, and W.E. Lee, “Microwave dielectric solid -solution phase in system BaO-Ln2O3-TiO2 (Ln = lanthanide cation),” Inter. Mater. Reviews , 43, 205, (1998)
    [5] D. Kolar, Z. Stadler, S. Gaberscek, and D. Suvorov, Ber. Dtsh. Keram. Ges., 55, 346, (1978)
    [6] D. Kolar, S. Gaberseck, and B. Volavsek, “Synthesis and crystal chemistry of BaNd2Ti3O10, BaNd2Ti5O14, and Nd4Ti9O24,” J. Solid State Chem. 38, 158, (1981)
    [7] S. Solomon, N. Santha, I.N. Jawahar, H. Sreemoolanadhan, and M. T. Sebastian, “Tailoring the microwave dielectric properties of BaRe2Ti4O12 an BaRe2Ti5O14 ceramics by compositional variations,” J. Mater. Sci. : Materials in Electronics 11, 595, (2000)
    [8] H. Ogsato, S. Nishigaki, and T. Okuda, “Superlattice and dielectric properties of BaO-R2O3-TiO2 (R = La, Nd and Sm) microware dielectric compounds,” Jpn. J. Appl. Phys., 31, 3136, (1992)
    [9] E. S. Razgon, A. M. Gens, M. B. Varfolomeev, S. S. Korovin and V. S. Kostomarov : Zh. Neorg. Khim. 25 (1980) 1701 Translation, “The complex barium and lanthanum titanates,” Russ. J. Inorg. Chem., 25, 945, (1980)
    [10] E.S. Razgon, A. M. Gens, M. B. Varfolomeev, S. S. Korovin and V. S. Kostomarovm, Zh. Neorg. Khim. 25 (1980) 2298 Translation, “Some barium lanthanide titanates,” Russ. J. Inorg. Chem., 25, 1274, (1980)
    [11] J. Takahashi, T. Ikegami, and K. Kageyama, “Occurrence of dielectric 1:1:4 compound in the ternary system BaO-Ln2O3-TiO2 (Ln = La, Nd and Sm): I, An improved coprecipitation method for preparing a single-phase powder of ternaty compound in the BaO-La2O3-TiO2 system,” J. Am. Ceram. Soc., 74, 1868, (1991)
    [12] J. Takahashi, T. Ikegami, and K. Kageyama, “Occrrrence of dielectric 1:1:4 compound in the ternary system BaO-Ln2O3-TiO2 (Ln = La, Nd and Sm): II, An improved coprecipitation method for preparing a single-phase powder of ternaty compound in the BaO-La2O3-TiO2 system,” J. Am. Ceram. Soc., 74, 1873, (1991)
    [13] H. Ohsato, “Science of tungstenbronze-type like Ba6-3xR8+2xTi18O54 (R = rare earth) microware dielectric solid solutions,” J. Eur. Ceram. Soc., 21, 2703, (2001)
    [14] H. Ohsato, M. Imaeda, “The quality factor of the microware dielectric materials based on the crystal structrure-as an example:the Ba6-3xR8+2xTi18O54 (R = rare earth) solid solutions,” Mater. Chem. Phys., 79, 208, (2003)
    [15] H. Ohsato, T. Oghhashi, S. Nishigaki, and T. Okuda, “Formation of Solid Solutions of New Tungsten Bronze-Type Microwave Dielectric Compounds Ba6-3xR8+2xTi18O54 (R=Nd and Sm, 0≤x≤1),” Jpn. J. Appl. Phy., 32, 4323, (1993)
    [16] A.M. Gens, M.B. Varfolomeev, V.S. Kostomarov, and S.S. Korovin, Russ. “Crystal-chemical and electrophysical properties of complex titanites of barium and the lanthanides,” J. Inorg. Chem., (Engl. Transl.), 26, 896, (1981)
    [17] K.M. Cruickshank, X. Jing, G. Wood, E.E. Lachowski, and A.R. West, “Barium neodymium titanate electrocreamics: phase equilibria studies of Ba6-3xNd8+2xTi18O54 solid solution,” J. Am. Cream. Soc., 79 [6] 1605 (1996)
    [18] Y. Ota, K.I. Kakimoto, H. Ohsato, and T. Okawa, “Low-temperature sintering of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition,” J. Eur. Ceram. Soc., 24, 1755, (2004)
    [19] J.M. Yoon, J.A. Lee, J.H. Lee, J.J. Kim, and S.H. Cho, “Sintering behaveior and microware dielectric characteristics of BaO-Sm2O3-4TiO2 ceramics with B2O3 and BaB2O4 addition,” J. Eur. Ceram. Soc. 26, 2129, (2006)
    [20] C.H. Lu, Y.H. Huang, “Densification and dielectric properties of barium neodymium titanium oxide ceramics,” Mater. Sci. Engin. B98, 33, (2003)
    [21] L.C. Chang, B.S. Chiou., “Effect of B2O3 Nano-Coating on the sintering behaviors and electrical microwave properties of Ba(Nd2−xSmx)Ti4O12 ceramics,” J. Electroceramics, 13, 829, (2004)
    [22] Y.J. Wu, X.M. Chen, “Modified Ba6-3xNd8+2xTi18O54 microwave dielectric ceramics,” J. Eur. Ceram. Soc., 19, 1123, (1999)
    [23] J.H. Park, Y.J. Choi, J.H. Park, and J.G. Park, “Low-fire dielectric compositions with permittivity 20-60 for LTCC applications,” Mater. Chem. Phys., 88, 308, (2004)
    [24] C.C. Cheng, T.E. Hsieh, and I.N. Lin, “Microwave dielectric properties of glass-ceramic composites for low temperature co-fire ceramics,” J. Eurp. Ceram. Soc., 23, 2553, (2003)
    [25] T. Okawa, M. Imaeda, and Ohsato, “Microware dielectric properties of Bi-Added Ba4Nd9+1/3Ti18O54 solid solutions,” Jpn. J. Appl. Phys., 39, 5645, (2000)
    [26] Y.J. Wu, X.M. Chen, “Structures and microware dielectric properties of Ba6-3x(Nd,Biy)8+2xTi18O54 (x = 2/3) solid solution,” J. Mater. Res., 16, 1734, (2001)
    [27] T. Okawa, M. Imaeda, H. Ohsato, and A. Harada, “Site occupancy of Bi ions and microware dielectric properties in Bi-doped Ba6-3xR8+2xTi18O54 (R = rare earth, x = 2/3) solid solutions,” Mater. Chem. phys., 79, 199, (2003)
    [28] J. M. Durand, J.P. Boilot, “Microwave characteristics of BaO-Bi2O3-TiO2-Nd2O3 dielectric resonators,” J. Mater. Sci. Letter, 6, 134, (1987)
    [29] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Introduction to ceramics,” 2nd Ed., John Wiley and Sons, New York, 1976.
    [30] Randall M. German., “Liquid phase sintering,” New York, 1985
    [31] M.Z. Jhou, J.H. Jean, “Low-fire processing of microwave BaTi4O9 dielectric with BaO-ZnO-B2O3 glass,” J. Am. Ceram. Soc., 89[3], 786, (2006)
    [32] Y. Ogata, Y. Hayashi, and Y. Kojima, “EMI filter with a ceramic material havint a chemical reaction inhibiting component,” US patent 5,592,134, Jan. 7, 1997
    [33] T.M. Peng, R.T. Hsu, and J.H. Jean, “Low-fire processing and properties of ferrite + dielectric ceramic composite,” J. Am. Ceram. Soc., 89 [9], 2822, (2006)
    [34] R.T. Hsu, T.M. Peng, and J.H. Jean, “Electrical properties of low-fire ferroelectric + ferromagnetic ceramic composite,” Jpn. J. Appl. Phy., 45 No. 7, 5841, (2006)
    [35] 王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立成功大學電機工程研究所碩士論文,2003。
    [36] S.F. Wang, Y.F. Hsu, Y.R. Wang, L.T. Cheng, Y.C. Hsu, J.P. Chu, and C.Y. Huang, “Densification, microstructure evolution and dielectric properties of Ba6-3x(Sm1-yNdy)8+2xTi18O54 microwave ceramics,” J. Eur. Ceram. Soc., 26, 1629, (2006)
    [37] Y.Li, X.M. Chen, N.Qin, and Y.W. Zeng, “Tin substitution for titanium in Ba6-3xNd8+2xTi18O54 microwave dielectric ceramics,” J. Am. Ceram. Soc., 88 [2], 481, (2005)
    [38] J.S. Sun, C.C. Wei, and L. Wu, “Dielectric properties of (Ba, Sr)O-(Sm, La)2O3-TiO2 ceramics at microwave frequencies,” J. Mater. Scien. 27, 5818, (1992)
    [39] Y.J. Choi, J.H. Park, J.H. Park, S. Nahm, and J.G. Park, “Middle- and high-permittibity dielectric compositions for low-temperature co-fired ceramics,” J. Eur. Ceram. Soc., 27, 2017, (2007)
    [40] J. Smith, H.P.J. Wijn, Ferrite, Philips Technical Library, Eindhoven, Netherlands, 278, (1959)
    [41] H.W. Zhang, H. Zhong, B.Y. Liu, and Y.Y. Liu, “Electromagnetic properties of a new ferrite-ceramic low-temperature cocalcined (LTCC) composite materials,” IEEE transactions on magnetics, 41, 10 (2005)
    [42] Z. Yue, S. Chen, X. Qi, Z. Gui, and L. Li, “Preparation electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics,” Journal of alloys and compounds, 375, 243, (2004)
    [43] H. Zhong, H. Zhang, “Synthesis and electromagnetic properties of ferroelectric-ferromagnetic composite material,” Journal of magnetism and magnetic materials, 288, 74, (2005)
    [44] T.M. Peng, T.T. Hsu, and J.H. Jean, “Low-fire processing and properties of ferrite+dielectric ceramic composite,” J. Am. Ceram. Soc. 89, 2822, (2006)
    [45] R.T. Hsu, T.M. Peng, and J.H. Jean, “Electrical properties of low-fire ferroelectric+ferromagnetic ceramic composite,” Jpn. J. Appl. Phys. 45, 5841, (2006)

    下載圖示 校內:2010-07-12公開
    校外:2011-07-12公開
    QR CODE