| 研究生: |
陳泰豪 Chen, Tai-How |
|---|---|
| 論文名稱: |
低溫共燒型介電-磁性陶瓷複合材料 Low-Temperature co-fired dielectric-magnetic ceramic composite |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 磁性 、複合材料 、微波介電 |
| 外文關鍵詞: | composite, magnetic, microwave dielectric |
| 相關次數: | 點閱:63 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於同時擁有優異磁及介電性質之複合材料可製作低成本、高性能之高頻複合式L/C EMI 濾波器,近年來已引起學者廣泛之研究。因此本研究選擇添加20 mole%的Bi成份於BaO.Nd2O3.4TiO2系統,並加入含有不同Bi成份比例之玻璃助燒結劑來達到低溫燒結之效果,並探討玻璃助燒結劑中之Bi成份在BaO.Nd2O3.4TiO2系統中所產生之影響。研究結果顯示添加20wt%之BB25SZ玻璃助燒結劑 (B-Bi-Si-Zn glass) 於BNBT (BaO.(Nd0.8Bi0.2)2O3.4TiO2) 樣品,可在900°C, 2h燒結緻密化,並擁有優異之介電性質。此外將上述之微波介電材料粉末與NiCuZn鐵氧磁體粉末進行複合,並添加適量之玻璃助燒結劑,即可在900°C, 2h燒結緻密化,並同時具有優異之介電與磁性質。
Recently, composite materials with both superior dielectric and magnetic properties can be used to produce a low cost and high performance L/C EMI filter for high frequency application. Therefore this composite material had attracted much attention. A high dielectric constant material, Bi-added BaO-Nd2O3-4TiO2, was chosen as the raw material for the present work. Moreover, a glass system was selected to be added to Bi-added BaO-Nd2O3-4TiO2 system to decrease the sintering temperature. The effects of various glasses addition on both the sintering behavior and dielectric properties were investigated. The results revealed that BNBT (BaO.(Nd0.8Bi0.2)2O3.4TiO2) with 20wt% BB25SZ (B-Bi-Si-Zn glass) could be densified at 900oC for 2h, which possess excellent dielectric properties. Furthermore, the above dielectric was mixed with different amount of NiCuZn ferrites to form dielectric-magnetic composites. With appropriate glass addition, the composites sintered at 900oC for 2h exhibited both superior dielectric and magnetic properties.
[1] D. Suvorov, M. Valant, and D. Kolar, “The role of dopants in tailoring the microwave properties of Ba6-xR8+2/3xTi18O54 R = (La-Gd) ceramics,” J. Mater. Sci., 32, 6483, (1997)
[2] I.S. Cho, D.W. Kim, J.R. Kim, and K.S. Hong, “Low-temperature sintering and microwave dielectric properties of BaO‧(Nd1−xBix)2O3‧4TiO2 by the glass additions,” Ceram. Inter., 30, 1181, (2004)
[3] H. Ohaato, T. Ohhashi, S. Nishigaki, T. Okuda, K. Sumiya, and S. Suzuki, “Formation of solid solutions of new tungsten bronze-type microwave dielectric compounds Ba6-3xR8+2xTi18O54 (R = Nd and Sm, 0≦x≦1),” Jpn. J. Appl. Phys., 32, 4323, (1993)
[4] R. Ubic, I.M. Reaney, and W.E. Lee, “Microwave dielectric solid -solution phase in system BaO-Ln2O3-TiO2 (Ln = lanthanide cation),” Inter. Mater. Reviews , 43, 205, (1998)
[5] D. Kolar, Z. Stadler, S. Gaberscek, and D. Suvorov, Ber. Dtsh. Keram. Ges., 55, 346, (1978)
[6] D. Kolar, S. Gaberseck, and B. Volavsek, “Synthesis and crystal chemistry of BaNd2Ti3O10, BaNd2Ti5O14, and Nd4Ti9O24,” J. Solid State Chem. 38, 158, (1981)
[7] S. Solomon, N. Santha, I.N. Jawahar, H. Sreemoolanadhan, and M. T. Sebastian, “Tailoring the microwave dielectric properties of BaRe2Ti4O12 an BaRe2Ti5O14 ceramics by compositional variations,” J. Mater. Sci. : Materials in Electronics 11, 595, (2000)
[8] H. Ogsato, S. Nishigaki, and T. Okuda, “Superlattice and dielectric properties of BaO-R2O3-TiO2 (R = La, Nd and Sm) microware dielectric compounds,” Jpn. J. Appl. Phys., 31, 3136, (1992)
[9] E. S. Razgon, A. M. Gens, M. B. Varfolomeev, S. S. Korovin and V. S. Kostomarov : Zh. Neorg. Khim. 25 (1980) 1701 Translation, “The complex barium and lanthanum titanates,” Russ. J. Inorg. Chem., 25, 945, (1980)
[10] E.S. Razgon, A. M. Gens, M. B. Varfolomeev, S. S. Korovin and V. S. Kostomarovm, Zh. Neorg. Khim. 25 (1980) 2298 Translation, “Some barium lanthanide titanates,” Russ. J. Inorg. Chem., 25, 1274, (1980)
[11] J. Takahashi, T. Ikegami, and K. Kageyama, “Occurrence of dielectric 1:1:4 compound in the ternary system BaO-Ln2O3-TiO2 (Ln = La, Nd and Sm): I, An improved coprecipitation method for preparing a single-phase powder of ternaty compound in the BaO-La2O3-TiO2 system,” J. Am. Ceram. Soc., 74, 1868, (1991)
[12] J. Takahashi, T. Ikegami, and K. Kageyama, “Occrrrence of dielectric 1:1:4 compound in the ternary system BaO-Ln2O3-TiO2 (Ln = La, Nd and Sm): II, An improved coprecipitation method for preparing a single-phase powder of ternaty compound in the BaO-La2O3-TiO2 system,” J. Am. Ceram. Soc., 74, 1873, (1991)
[13] H. Ohsato, “Science of tungstenbronze-type like Ba6-3xR8+2xTi18O54 (R = rare earth) microware dielectric solid solutions,” J. Eur. Ceram. Soc., 21, 2703, (2001)
[14] H. Ohsato, M. Imaeda, “The quality factor of the microware dielectric materials based on the crystal structrure-as an example:the Ba6-3xR8+2xTi18O54 (R = rare earth) solid solutions,” Mater. Chem. Phys., 79, 208, (2003)
[15] H. Ohsato, T. Oghhashi, S. Nishigaki, and T. Okuda, “Formation of Solid Solutions of New Tungsten Bronze-Type Microwave Dielectric Compounds Ba6-3xR8+2xTi18O54 (R=Nd and Sm, 0≤x≤1),” Jpn. J. Appl. Phy., 32, 4323, (1993)
[16] A.M. Gens, M.B. Varfolomeev, V.S. Kostomarov, and S.S. Korovin, Russ. “Crystal-chemical and electrophysical properties of complex titanites of barium and the lanthanides,” J. Inorg. Chem., (Engl. Transl.), 26, 896, (1981)
[17] K.M. Cruickshank, X. Jing, G. Wood, E.E. Lachowski, and A.R. West, “Barium neodymium titanate electrocreamics: phase equilibria studies of Ba6-3xNd8+2xTi18O54 solid solution,” J. Am. Cream. Soc., 79 [6] 1605 (1996)
[18] Y. Ota, K.I. Kakimoto, H. Ohsato, and T. Okawa, “Low-temperature sintering of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition,” J. Eur. Ceram. Soc., 24, 1755, (2004)
[19] J.M. Yoon, J.A. Lee, J.H. Lee, J.J. Kim, and S.H. Cho, “Sintering behaveior and microware dielectric characteristics of BaO-Sm2O3-4TiO2 ceramics with B2O3 and BaB2O4 addition,” J. Eur. Ceram. Soc. 26, 2129, (2006)
[20] C.H. Lu, Y.H. Huang, “Densification and dielectric properties of barium neodymium titanium oxide ceramics,” Mater. Sci. Engin. B98, 33, (2003)
[21] L.C. Chang, B.S. Chiou., “Effect of B2O3 Nano-Coating on the sintering behaviors and electrical microwave properties of Ba(Nd2−xSmx)Ti4O12 ceramics,” J. Electroceramics, 13, 829, (2004)
[22] Y.J. Wu, X.M. Chen, “Modified Ba6-3xNd8+2xTi18O54 microwave dielectric ceramics,” J. Eur. Ceram. Soc., 19, 1123, (1999)
[23] J.H. Park, Y.J. Choi, J.H. Park, and J.G. Park, “Low-fire dielectric compositions with permittivity 20-60 for LTCC applications,” Mater. Chem. Phys., 88, 308, (2004)
[24] C.C. Cheng, T.E. Hsieh, and I.N. Lin, “Microwave dielectric properties of glass-ceramic composites for low temperature co-fire ceramics,” J. Eurp. Ceram. Soc., 23, 2553, (2003)
[25] T. Okawa, M. Imaeda, and Ohsato, “Microware dielectric properties of Bi-Added Ba4Nd9+1/3Ti18O54 solid solutions,” Jpn. J. Appl. Phys., 39, 5645, (2000)
[26] Y.J. Wu, X.M. Chen, “Structures and microware dielectric properties of Ba6-3x(Nd,Biy)8+2xTi18O54 (x = 2/3) solid solution,” J. Mater. Res., 16, 1734, (2001)
[27] T. Okawa, M. Imaeda, H. Ohsato, and A. Harada, “Site occupancy of Bi ions and microware dielectric properties in Bi-doped Ba6-3xR8+2xTi18O54 (R = rare earth, x = 2/3) solid solutions,” Mater. Chem. phys., 79, 199, (2003)
[28] J. M. Durand, J.P. Boilot, “Microwave characteristics of BaO-Bi2O3-TiO2-Nd2O3 dielectric resonators,” J. Mater. Sci. Letter, 6, 134, (1987)
[29] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Introduction to ceramics,” 2nd Ed., John Wiley and Sons, New York, 1976.
[30] Randall M. German., “Liquid phase sintering,” New York, 1985
[31] M.Z. Jhou, J.H. Jean, “Low-fire processing of microwave BaTi4O9 dielectric with BaO-ZnO-B2O3 glass,” J. Am. Ceram. Soc., 89[3], 786, (2006)
[32] Y. Ogata, Y. Hayashi, and Y. Kojima, “EMI filter with a ceramic material havint a chemical reaction inhibiting component,” US patent 5,592,134, Jan. 7, 1997
[33] T.M. Peng, R.T. Hsu, and J.H. Jean, “Low-fire processing and properties of ferrite + dielectric ceramic composite,” J. Am. Ceram. Soc., 89 [9], 2822, (2006)
[34] R.T. Hsu, T.M. Peng, and J.H. Jean, “Electrical properties of low-fire ferroelectric + ferromagnetic ceramic composite,” Jpn. J. Appl. Phy., 45 No. 7, 5841, (2006)
[35] 王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立成功大學電機工程研究所碩士論文,2003。
[36] S.F. Wang, Y.F. Hsu, Y.R. Wang, L.T. Cheng, Y.C. Hsu, J.P. Chu, and C.Y. Huang, “Densification, microstructure evolution and dielectric properties of Ba6-3x(Sm1-yNdy)8+2xTi18O54 microwave ceramics,” J. Eur. Ceram. Soc., 26, 1629, (2006)
[37] Y.Li, X.M. Chen, N.Qin, and Y.W. Zeng, “Tin substitution for titanium in Ba6-3xNd8+2xTi18O54 microwave dielectric ceramics,” J. Am. Ceram. Soc., 88 [2], 481, (2005)
[38] J.S. Sun, C.C. Wei, and L. Wu, “Dielectric properties of (Ba, Sr)O-(Sm, La)2O3-TiO2 ceramics at microwave frequencies,” J. Mater. Scien. 27, 5818, (1992)
[39] Y.J. Choi, J.H. Park, J.H. Park, S. Nahm, and J.G. Park, “Middle- and high-permittibity dielectric compositions for low-temperature co-fired ceramics,” J. Eur. Ceram. Soc., 27, 2017, (2007)
[40] J. Smith, H.P.J. Wijn, Ferrite, Philips Technical Library, Eindhoven, Netherlands, 278, (1959)
[41] H.W. Zhang, H. Zhong, B.Y. Liu, and Y.Y. Liu, “Electromagnetic properties of a new ferrite-ceramic low-temperature cocalcined (LTCC) composite materials,” IEEE transactions on magnetics, 41, 10 (2005)
[42] Z. Yue, S. Chen, X. Qi, Z. Gui, and L. Li, “Preparation electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics,” Journal of alloys and compounds, 375, 243, (2004)
[43] H. Zhong, H. Zhang, “Synthesis and electromagnetic properties of ferroelectric-ferromagnetic composite material,” Journal of magnetism and magnetic materials, 288, 74, (2005)
[44] T.M. Peng, T.T. Hsu, and J.H. Jean, “Low-fire processing and properties of ferrite+dielectric ceramic composite,” J. Am. Ceram. Soc. 89, 2822, (2006)
[45] R.T. Hsu, T.M. Peng, and J.H. Jean, “Electrical properties of low-fire ferroelectric+ferromagnetic ceramic composite,” Jpn. J. Appl. Phys. 45, 5841, (2006)