| 研究生: |
馬郁翔 Ma, Yu-Hsiang |
|---|---|
| 論文名稱: |
探討微小球蛋白(MSP58)與Inversin蛋白之間交互作用 Identification of Inversin as a novel interaction partner of 58-kDa microspherule protein (MSP58) |
| 指導教授: |
林鼎晏
Lin, Ding-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 58-kDa微小球蛋白 、Inversin |
| 外文關鍵詞: | MSP58, Inversin, tumorigenesis |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
58-kDa微小球蛋白(MSP58) 是一種核仁蛋白,其在生物演化上非常保守,且對於細胞維持的功能上扮演重要的角色,包括細胞轉型、細胞增生以及轉錄調控等。而到目前為止,對於MSP58在致癌基因的定位仍需要進一步的研究釐清。我們使用酵母菌雙雜合分析法(Yeast Two-hybrid Screening) 想去找尋並探討MSP58與其結合蛋白之間的交互作用。而在這一系列蛋白之中,我們目前主要專注在Inversin這個蛋白。Inversin又被稱作是Nephrocystin-2(NPHP)蛋白,屬於Nephrocystin蛋白家族中的一員,同時也是第二型腎囊腫(NPHP2) 中的纖毛蛋白(腎囊腫,是一種體染色體隱性腎臟病)。先前的研究指出,Inversin蛋白在胚胎的發育以及腎臟的疾病中扮演相當重要的角色,但是其在腫瘤形成中的功能尚未被清楚的探討;但近期報導指出Inversin蛋白可以促進肺癌的侵入能力並與非小型細胞肺癌的惡性表型相關。另外,Inversin蛋白也與anaphase-promoting complex 2(APC2)、Aurora A和Akt有交互作用,顯示其可能參與在細胞週期調控。我們希望進一步了解58-kDa微小球蛋白(MSP58)與Inversin蛋白參與在細胞生長和增值的調控的分子機制與其生物意義。這些研究會為我們對於58-kDa微小球蛋白(MSP58)在腫瘤發展的過程中提供一個新的視野來探討其分子機制與功能。
58-kDa microspherule protein (MSP58) is an evolutionarily conserved nuclear/ nucleolar protein and plays a critical role in numerous cellular processes including transcriptional regulation, microtubule organization, cell transformation and senescence. However, the mechanisms underlying the oncogenic activities of MSP58 are not revealed clearly so far. We have used a yeast two-hybrid approach to identify several novel proteins that interact with MSP58. Among them, we are currently focusing on characterizing the Inversin protein. Inversin, also known as Nephrocystin-2, is a ciliary protein encoded by NPHP2 (nephronophthisis). Although previous research has indicated that inversin played an important role in renal diseases and embryonic development, its function in tumorigenesis was not illustrated. A recent study shows that Inversin promotes the invasiveness of lung cancer and correlates with the malignant phenotype and invasiveness of non-small cell lung cancer; the mechanism was unclear. Moreover, Inversin has been reported to interact with anaphase-promoting complex 2 (APC2), Aurora A and Akt, suggesting that it is involved in the regulation of cell cycle progression. We will clarify the biological role of MSP58/Inversin interactions involved in the control of cell proliferation and the cell division. These studies will provide new insights into the molecular mechanisms of MSP58-mediated tumorigenesis.
1. Adams, P.D., and Enders, G.H. Wnt-signaling and senescence: A tug of war in early neoplasia? Cancer Biol Ther 7, 1706-1711, 2008.
2. Andersen, D.S., Raja, S.J., Colombani, J., Shaw, R.L., Langton, P.F., Akhtar, A., and Tapon, N. Drosophila MCRS2 associates with RNA polymerase II complexes to regulate transcription. Mol Cell Biol 30, 4744-4755, 2010.
3. Bader, A.G., Schneider, M.L., Bister, K., and Hartl, M. TOJ3, a target of the v-Jun transcription factor, encodes a protein with transforming activity related to human microspherule protein 1 (MCRS1). Oncogene 20, 7524-7535, 2001.
4. Basu, S., Haase, G., and Ben-Ze'ev, A. Wnt signaling in cancer stem cells and colon cancer metastasis. F1000Res 5, 2016.
5. Bellavia, S., Dahan, K., Terryn, S., Cosyns, J.P., Devuyst, O., and Pirson, Y. A homozygous mutation in INVS causing juvenile nephronophthisis with abnormal reactivity of the Wnt/beta-catenin pathway. Nephrol Dial Transplant 25, 4097-4102, 2010.
6. Benzing, T., Simons, M., and Walz, G. Wnt signaling in polycystic kidney disease. J Am Soc Nephrol 18, 1389-1398, 2007.
7. Bergmann, C., Fliegauf, M., Bruchle, N.O., Frank, V., Olbrich, H., Kirschner, J., Schermer, B., Schmedding, I., Kispert, A., Kranzlin, B., Nurnberg, G., Becker, C., Grimm, T., Girschick, G., Lynch, S.A., Kelehan, P., Senderek, J., Neuhaus, T.J., Stallmach, T., Zentgraf, H., Nurnberg, P., Gretz, N., Lo, C., Lienkamp, S., Schafer, T., Walz, G., Benzing, T., Zerres, K., and Omran, H. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet 82, 959-970, 2008.
8. Cheng, M., Xue, H., Cao, W., Li, W., Chen, H., Liu, B., Ma, B., Yan, X., and Chen, Y.G. Receptor for Activated C Kinase 1 (RACK1) Promotes Dishevelled Protein Degradation via Autophagy and Antagonizes Wnt Signaling. J Biol Chem 291, 12871-12879, 2016.
9. Clevers, H., and Nusse, R. Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205, 2012.
10. Cohen, E.D., Tian, Y., and Morrisey, E.E. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 135, 789-798, 2008.
11. Davidovic, L., Bechara, E., Gravel, M., Jaglin, X.H., Tremblay, S., Sik, A., Bardoni, B., and Khandjian, E.W. The nuclear microspherule protein 58 is a novel RNA-binding protein that interacts with fragile X mental retardation protein in polyribosomal mRNPs from neurons. Hum Mol Genet 15, 1525-1538, 2006.
12. De Ferrari, G.V., Avila, M.E., Medina, M.A., Perez-Palma, E., Bustos, B.I., and Alarcon, M.A. Wnt/beta-catenin signaling in Alzheimer's disease. CNS Neurol Disord Drug Targets 13, 745-754, 2014.
13. Edeling, M., Ragi, G., Huang, S., Pavenstadt, H., and Susztak, K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 12, 426-439, 2016.
14. Gan, X.Q., Wang, J.Y., Xi, Y., Wu, Z.L., Li, Y.P., and Li, L. Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol 180, 1087-1100, 2008.
15. Gao, C., Cao, W., Bao, L., Zuo, W., Xie, G., Cai, T., Fu, W., Zhang, J., Wu, W., Zhang, X., and Chen, Y.G. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol 12, 781-790, 2010.
16. Gao, C., and Chen, Y.G. Dishevelled: The hub of Wnt signaling. Cell Signal 22, 717-727, 2010.
17. Gao, C., Xiao, G., and Hu, J. Regulation of Wnt/beta-catenin signaling by posttranslational modifications. Cell Biosci 4, 13, 2014.
18. Gurskaya, O.Y., Dobryakova, Y.V., and Markevich, V.A. [A Role of the Wnt Signaling in the Regulation of Brain Function]. Zh Vyssh Nerv Deiat Im I P Pavlova 65, 387-399, 2015.
19. Hirohashi, Y., Wang, Q., Liu, Q., Du, X., Zhang, H., Sato, N., and Greene, M.I. p78/MCRS1 forms a complex with centrosomal protein Nde1 and is essential for cell viability. Oncogene 25, 4937-4946, 2006.
20. Hsu, C.C., Chen, C.H., Hsu, T.I., Hung, J.J., Ko, J.L., Zhang, B., Lee, Y.C., Chen, H.K., Chang, W.C., and Lin, D.Y. The 58-kda microspherule protein (MSP58) represses human telomerase reverse transcriptase (hTERT) gene expression and cell proliferation by interacting with telomerase transcriptional element-interacting factor (TEIF). Biochim Biophys Acta 1843, 565-579, 2014.
21. Hsu, C.C., Lee, Y.C., Yeh, S.H., Chen, C.H., Wu, C.C., Wang, T.Y., Chen, Y.N., Hung, L.Y., Liu, Y.W., Chen, H.K., Hsiao, Y.T., Wang, W.S., Tsou, J.H., Tsou, Y.H., Wu, M.H., Chang, W.C., and Lin, D.Y. 58-kDa microspherule protein (MSP58) is novel Brahma-related gene 1 (BRG1)-associated protein that modulates p53/p21 senescence pathway. J Biol Chem 287, 22533-22548, 2012.
22. Ilyas, M., Tomlinson, I.P., Rowan, A., Pignatelli, M., and Bodmer, W.F. Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci U S A 94, 10330-10334, 1997.
23. Itoh, K., Brott, B.K., Bae, G.U., Ratcliffe, M.J., and Sokol, S.Y. Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. J Biol 4, 3, 2005.
24. Jiang, G.Y., Zhang, Y., Zhang, X.P., Lin, X.Y., Yu, J.H., and Wang, E.H. Inversin correlates with the malignant phenotype of non-small cell lung cancer and promotes the invasiveness of lung cancer cells. Tumour Biol 39, 1010428317691177, 2017.
25. Kobayashi, Y., Uehara, S., Udagawa, N., and Takahashi, N. Regulation of bone metabolism by Wnt signals. J Biochem 159, 387-392, 2016.
26. Kurosaka, H., Trainor, P.A., Leroux-Berger, M., and Iulianella, A. Cranial nerve development requires co-ordinated Shh and canonical Wnt signaling. PLoS One 10, e0120821, 2015.
27. Lee, S.H., Lee, M.S., Choi, T.I., Hong, H., Seo, J.Y., Kim, C.H., and Kim, J. MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment. Sci Rep 6, 27284, 2016.
28. Lienkamp, S., Ganner, A., and Walz, G. Inversin, Wnt signaling and primary cilia. Differentiation 83, S49-55, 2012.
29. Lin, D.Y., and Shih, H.M. Essential role of the 58-kDa microspherule protein in the modulation of Daxx-dependent transcriptional repression as revealed by nucleolar sequestration. J Biol Chem 277, 25446-25456, 2002.
30. Mergen, M., Engel, C., Muller, B., Follo, M., Schafer, T., Jung, M., and Walz, G. The nephronophthisis gene product NPHP2/Inversin interacts with Aurora A and interferes with HDAC6-mediated cilia disassembly. Nephrol Dial Transplant 28, 2744-2753, 2013.
31. Metcalfe, C., Ibrahim, A.E., Graeb, M., de la Roche, M., Schwarz-Romond, T., Fiedler, M., Winton, D.J., Corfield, A., and Bienz, M. Dvl2 promotes intestinal length and neoplasia in the ApcMin mouse model for colorectal cancer. Cancer Res 70, 6629-6638, 2010.
32. Mochizuki, T., Saijoh, Y., Tsuchiya, K., Shirayoshi, Y., Takai, S., Taya, C., Yonekawa, H., Yamada, K., Nihei, H., Nakatsuji, N., Overbeek, P.A., Hamada, H., and Yokoyama, T. Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395, 177-181, 1998.
33. Morgan, D., Eley, L., Sayer, J., Strachan, T., Yates, L.M., Craighead, A.S., and Goodship, J.A. Expression analyses and interaction with the anaphase promoting complex protein Apc2 suggest a role for inversin in primary cilia and involvement in the cell cycle. Hum Mol Genet 11, 3345-3350, 2002.
34. Morgan, D., Turnpenny, L., Goodship, J., Dai, W., Majumder, K., Matthews, L., Gardner, A., Schuster, G., Vien, L., Harrison, W., Elder, F.F., Penman-Splitt, M., Overbeek, P., and Strachan, T. Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 20, 149-156, 1998.
35. Nelson, P.J., von Toerne, C., and Grone, H.J. Wnt-signaling pathways in progressive renal fibrosis. Expert Opin Ther Targets 15, 1073-1083, 2011.
36. Okumura, K., Zhao, M., Depinho, R.A., Furnari, F.B., and Cavenee, W.K. Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proc Natl Acad Sci U S A 102, 2703-2706, 2005.
37. Otto, E.A., Schermer, B., Obara, T., O'Toole, J.F., Hiller, K.S., Mueller, A.M., Ruf, R.G., Hoefele, J., Beekmann, F., Landau, D., Foreman, J.W., Goodship, J.A., Strachan, T., Kispert, A., Wolf, M.T., Gagnadoux, M.F., Nivet, H., Antignac, C., Walz, G., Drummond, I.A., Benzing, T., and Hildebrandt, F. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 34, 413-420, 2003.
38. Polakis, P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4, 2012.
39. Ren, Y., Busch, R.K., Perlaky, L., and Busch, H. The 58-kDa microspherule protein (MSP58), a nucleolar protein, interacts with nucleolar protein p120. Eur J Biochem 253, 734-742, 1998.
40. Rual, J.F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., Berriz, G.F., Gibbons, F.D., Dreze, M., Ayivi-Guedehoussou, N., Klitgord, N., Simon, C., Boxem, M., Milstein, S., Rosenberg, J., Goldberg, D.S., Zhang, L.V., Wong, S.L., Franklin, G., Li, S., Albala, J.S., Lim, J., Fraughton, C., Llamosas, E., Cevik, S., Bex, C., Lamesch, P., Sikorski, R.S., Vandenhaute, J., Zoghbi, H.Y., Smolyar, A., Bosak, S., Sequerra, R., Doucette-Stamm, L., Cusick, M.E., Hill, D.E., Roth, F.P., and Vidal, M. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173-1178, 2005.
41. Schepers, A., and Clevers, H. Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol 4, a007989, 2012.
42. Shi, H., Chen, S., Jin, H., Xu, C., Dong, G., Zhao, Q., Wang, W., Zhang, H., Lin, W., Zhang, J., Davidovic, L., Yao, L., and Fan, D. Downregulation of MSP58 inhibits growth of human colorectal cancer cells via regulation of the cyclin D1-cyclin-dependent kinase 4-p21 pathway. Cancer Sci 100, 1585-1590, 2009.
43. Shi, H., Li, S.J., Zhang, B., Liu, H.L., and Chen, C.S. Expression of MSP58 in human colorectal cancer and its correlation with prognosis. Med Oncol 29, 3136-3142, 2012.
44. Simons, M., Gloy, J., Ganner, A., Bullerkotte, A., Bashkurov, M., Kronig, C., Schermer, B., Benzing, T., Cabello, O.A., Jenny, A., Mlodzik, M., Polok, B., Driever, W., Obara, T., and Walz, G. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37, 537-543, 2005.
45. Song, H., Li, Y., Chen, G., Xing, Z., Zhao, J., Yokoyama, K.K., Li, T., and Zhao, M. Human MCRS2, a cell-cycle-dependent protein, associates with LPTS/PinX1 and reduces the telomere length. Biochem Biophys Res Commun 316, 1116-1123, 2004.
46. Triantafillidis, J.K., Vagianos, C., and Malgarinos, G. Colonoscopy in Colorectal Cancer Screening: Current Aspects. Indian J Surg Oncol 6, 237-250, 2015.
47. Wallingford, J.B., and Habas, R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132, 4421-4436, 2005.
48. Wang, Y., Li, Y.P., Paulson, C., Shao, J.Z., Zhang, X., Wu, M., and Chen, W. Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed) 19, 379-407, 2014.
49. Xu, C.S., Zheng, J.Y., Zhang, H.L., Zhao, H.D., Zhang, J., Wu, G.Q., Wu, L., Wang, Q., Wang, W.Z., and Zhang, J. MSP58 knockdown inhibits the proliferation of esophageal squamous cell carcinoma in vitro and in vivo. Asian Pac J Cancer Prev 13, 3233-3238, 2012.
50. Xu, Q., Krause, M., Samoylenko, A., and Vainio, S. Wnt Signaling in Renal Cell Carcinoma. Cancers (Basel) 8, 2016.
51. Yang, Y., Lijam, N., Sussman, D.J., and Tsang, M. Genomic organization of mouse Dishevelled genes. Gene 180, 121-123, 1996.
52. Zhang, L., Zhou, F., van Laar, T., Zhang, J., van Dam, H., and Ten Dijke, P. Fas-associated factor 1 antagonizes Wnt signaling by promoting beta-catenin degradation. Mol Biol Cell 22, 1617-1624, 2011.
校內:2023-07-24公開