簡易檢索 / 詳目顯示

研究生: 吳勇箴
Wu, Yeong-Jen
論文名稱: 剪力式壓電噴頭設計研究
Studies on Shear Mode Piezoelectric Printhead Design
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 95
中文關鍵詞: 壓電噴頭
外文關鍵詞: printhead, piezoelectric
相關次數: 點閱:58下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    隨著噴墨技術的進步,噴墨技術不再只是應用在傳統列印市場上,在其他相關工業用途例如印刷電路板導線噴印、電阻、電容、光電用機能膜、無線射頻識別系統(RFID)天線及導線,還有快速成型(Rapid Prototyping)等也可運用此技術。壓電致動式噴印技術,為其中最受囑目的一種關鍵技術,可直接運用噴印的作法達到理想的目標。
    本研究之目的在於研究剪力式壓電噴嘴製造技術,不同於傳統的壓電式噴墨頭製造所採用的黃光微影技術,改以晶圓切割的方式同時切割出流道以及壓電致動牆,可以大幅降低製造成本及時間,並且具有高於傳統壓電噴墨頭設計將近兩倍的噴孔密度。並探討噴口雷射與蝕刻製程間的優劣和渠道內表面改質的影響。此噴嘴在給予壓電噴嘴電壓,輸入的電壓為25V的方波,duty time 20%頻率4218時,有較好的噴發效果,但所噴發的液滴尺寸很不一定,液滴大小範圍從40μm~120μm都有,自製的噴嘴在現階段只能到噴出液滴,日後要朝精確的量化或控制液滴噴發的目標繼續研究。

    Abstract

    In recent years, the ink-jet technologies are used on some industrial manufacture like circuit board, resister, electric capacity, RFID and rapid prototyping technologies. For cost down and manufacture time saving, the piezoelectric printing technology is applied very popularly.
    The purpose of this thesis is to study a kind of new manufacturing process of piezoelectric printhead which is different from traditional yellow light process. It can reduce manufacture cost and time substantially by using wafer-cutting technology to form the channels and the acting walls. The printhead has double channel than the traditional one. The effects of different kinds manufacturing process of nozzle and surface modification of channel are discussed. This printhead can eject drop successfully when input pulse is 25 voltage, frequency is 4218, and duty time is 20% . The range of the drops size is from 40μm to 120μm. This printhead ejects drops currently but it can’t be control the motion of ejecting precisely.

    目錄 摘要 英文摘要 誌謝 目錄 I 表目錄 IV 圖目錄 V 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 12 1.2.1壓電材料發展 12 1.2.2 壓電噴墨技術的發展 13 1.3研究目的 16 1.4與市售Xaar噴墨頭的比較 18 第二章 壓電理論與推導 20 2.1壓電材料介紹 20 2.2.1正壓電效應 20 2.2.2逆壓電效應 23 2.3壓電方程式 25 2.4壓電型變方式 33 第三章 剪力式壓電噴嘴設計及模擬 38 3.1剪力式壓電噴嘴致動概念 38 3.2剪力式壓電噴嘴設計 41 3.3剪力式壓電噴嘴模擬 44 第四章 剪力式壓電噴嘴製造 4.1剪力式壓電噴嘴製程 53 4.2壓電片規格 53 4.3切割製程 56 4.4壓電噴墨頭封裝 59 4.5打噴口 60 4.6流道表面改質 72 第五章 結果與討論 75 5.1單管剪力式壓電噴嘴 75 5.2陣列剪力式壓電噴嘴 83 5.3粒徑大小不受控制的討論 84 5.4不同噴口加工方式的優劣 85 第六章 結論 87 第七章 未來研究方向 90 參考文獻 92

    參考文獻
    1. 大紀元時報-台灣版 發報日期:2006/08/28。
    2. D. Rose, “Microdispensing Technologies in Drug Discovery,” DDT, Vol. 4, No.9, Sep., pp.xx-xx, 1999, USA.
    3. D. J. Hayes, “Process for Manufacturing Metal Ball Electrodes for a Semiconductor Device,” U.S. Patent 5,861,323, January 19, 1999.
    4. Jayesh Bharathan and Yang Yang, “Polymer electroluminescent devices processed by inkjet printing,” App. Phys. Lett., Vol. 72, No.21, 25 May, 1998.
    5. Sawyer B. Fuller, Eric J. Wilhelm, and Joseph M. Jacobson, “Ink-Jet Printed Nanoparticle Microelectromechanical Systems,” Journal of Microelectromechnaical Systems, Vol. 11, No. 1, February 2002.
    6. D. J. Hayes and M. W. Hartnett, “Method for Preparing a Chip Scale Package and Product Produced by the Method,” U.S. Patent 6,114,187, September 05, 2000.
    7. Hue P. Le, “Progress and Trends in Ink-jet Printing Technology,” Journal of Imaging Science and Technology, Volume 42, Number 1, January/February, 1998.
    8. B. Hadimioglu, S. Elrod, R. Sprague, “Acoustic Ink printing: An Application of Ultrasonics for Photographic Quality Printing at High Speed,” IEEE Ultrasonics Symposium, vol. 1, pp. 627 – 635, 2001.
    9. 池田拓郎 著, 陳世春 譯著, 基本壓電材料學 ,第1~2頁,復漢社出版(1997/12)。
    10. 陶瓷技術手冊, 經濟部技術處發行,中華民國產業科技發展協進會與中華民國粉末冶金協會出版(1994/07)。
    11. S. Kamisuki, T. Hagata, C. Tezuka, Y. Nose, M. Fujii, M. Atobe, “A Low Power, Small, Electrostatically-Driven Commercial Inkjet Head,” Micro Electro Mechanical Systems, 1998. MEMS 98. IEEE Proceedings, The Eleventh Annual International Workshop, pp. 63- 68, 1998.
    12. Christian Rembe, Stefan aus der Wiesche, Eberhard P. Hofer, “Thermal Ink Jet Dynamics: Modeling, Simulation, and Testing,” Microelectronics Reliability, Vol. 40, pp. 525-532, 2000.
    13. Ping-Hei Chen, Wen-Cheng Chen and S.-H. Chang, “Bubble Growth and Ink Ejection Process of a Thermal Ink Jet Printhead,” Int. J. Mech. Sci., Vol. 39, No. 6, pp. 683-695, 1997.
    14. http://entry.hit.edu.tw/~d904030/new_page_4.htm.
    15. 周卓明,層狀壓電薄殼之研究:設計、製程與實驗,台灣大學應用力學研究所博士論文,台北(1997/06)
    16. 周卓明, 壓電力學,全華科技圖書股份有限公司出版, 初版一刷p.1-28 (92/11).
    17. James D. Plummer, Michael D. Deal, Peter B. Griffin, “Silicon VLSI Technology,” The Film Deposition, pp.513.
    18. W. Scott Bartky, Anthony D. Paton, Stephen Temple, A. John Michaelis, “Droplet Deposition Apparatus,” U.S. patent no. 4,879,568, 1989.
    19. Stephen Temple, “High Density Multi-Channel Array, Electrically Pulsed Droplet Deposition Apparatus,” U.S. patent no. 5,016,028, 1991.
    20. http://www.eleceram.com.tw/c-body-product-ceramics.htm
    21. Kirt R.Williams and Richard S. Muller, “Etch rates for micromachining processing,” Journal Of Microelectromechanical Systems, Vol. 5, No. 4, December 1996.
    22. http://140.116.176.21/www/index.htm
    23. S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A High Resolution, Electrostatically-Driven commercial Inkjet Head,” IEEE Micro Electro Mechanical Systems, 2000. The Thirteenth Annual International Conference, pp. 793-798, 2000.
    24. B. Hadimioglu, A. Elrod, D. L. Steinmetz, M. Lim, C. Zesch, “Acoustic Ink Printing,” Ultrasonics Symposium, 1992. IEEE Proceedings, vol. 2, pp. 929-935, 1992.
    25. Jürgen Brünahl, Alex M. Grishin, “Piezoelectric shear mode drop-on-demand inkjet actuator,” Sensors and Actuators, A 101, pp. 371-382, 2002.
    26. R. Elmqvist, “Measuring instrument of the recording type,” US Patent no. 2,566,443, 1948.
    27. Richard G. Sweet, “Fluid Droplet Recorder,” US Patent no. 3,596,275.
    28. I. Endo, Y. Sato, S. Saito, T. Nakagiri, S. Ohno, “Liquid Jet Recording Process and Apparatus thereof,” UK Patent no. 2,007,162, 1979.
    29. J.L. Vaught, F.L. Cloutier, D.K. Donald, J.D. Meyer, C.A. Tacklind, H.H. Taub, “Thermal Inkjet Printer,” US Patent no. 4,490,728, 1984.
    30. Francis C. Lee, “PZT Printing Applications, Technologies, New Devices,” Ultrasonics Symposium, IEEE Proceedings, 1988.
    31. Qiming Zhang, Nagoya, Japan, “Piezoelectric Type Liquid Droplet Ejecting Device Which Compensates For Residual Pressure Fluctuations,” U.S. patent no. 5,757,392.
    32. Hilarion Braun, Beaver Creek, Ohio, “Piezoelectric ink jet print head and method of making,” U.S. patent no. 5,598,196.

    下載圖示
    2007-08-27公開
    QR CODE