簡易檢索 / 詳目顯示

研究生: 郭柏良
Kuo, Po-Liang
論文名稱: 以MIEX有機物交換樹脂做為臭氧前處理之研究
The Effect of MIEX Pretreatment on Ozonation
指導教授: 葉宣顯
Yeh, Hsuan-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 82
中文關鍵詞: MIEX溴酸鹽臭氧
外文關鍵詞: bromate, ozonation, MIEX
相關次數: 點閱:178下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離島地區的自來水問題常較台灣本島來得嚴重,主要原因為海水入侵以及有機物濃度較高,造成TDS、三鹵甲烷過高,此外還有紅水等問題,導致居民經常抱怨。有鑑於此,當地自來水廠有意興建高級淨水處理廠,其中可能包括GAC單元。一般在GAC單元之前會先經臭氧前處理,以避免GAC再生頻率過高,導致成本升高。以金門原水為例,若採用臭氧為其前處理,因為海水入侵之關係,可能原水中之溴離子(Br-)含量較高,則擔心會有過量之溴酸鹽生成問題,而溴酸鹽已知對人體有致癌性之危險,並且在國內對臭氧處理水已訂有溴酸鹽之標準。
    本研究則是以澳洲所研發之MIEX有機物交換樹脂來做為臭氧前的處理,以金門原水與腐植酸配製之人工原水兩部分進行,觀察這兩種原水在經過臭氧處理後,溴酸根離子(BrO3-)之生成情形,以及MIEX前處理程序能否有效解決溴酸根的問題。
    實驗結果顯示MIEX有機物交換樹脂在對人工原水或金門原水都有良好的有機物去除率,經過MIEX處理之後,水體的臭氧需求量也都有所下降,可以有效節省在淨水過程中的臭氧加量。在溴酸根離子部分,人工原水直接經過臭氧處理,所生成之溴酸根離子濃度高達近350μg/L,在經過MIEX處理之後,大幅下降到只剩未到150μg/L,去除能力良好。在金門原水部分,原水直接經過臭氧處理僅有約50μg/L的溴酸根離子生成,但仍超出法定標準之10μg/L,經過MIEX前處理程序之後,則其經臭氧後出水並未被儀器偵測到有溴酸根離子的生成(方法偵測極限為4μg/L)。故以MIEX有機物交換樹脂為淨水程序之前處理,可以有效抑制金門原水及人工原水臭氧處理單元中溴酸根離子之生成。

    The public water supplies of off-shore island of Taiwan encounter several problems, including salt water intrusion, high dissolved organic content in source water, high THM and red water in the distribution system. In order to abate these problems, the Water Works are contemplating upgrading the existing facilities. Including GAC filter is one of the options. Now, the dilemma is with only GAC, the regeneration frequency of GAC bed will be quite high, and, therefore, high costs. If GAC bed is preceded by ozonation, the regeneration frequency can be reduced, but there may be bromate problem, as there is high bromide concentration in the source water. Bromate is a suspected carcinogen, and local drinking water quality standards have set a limit for it.

    As the Magnetic Ion Exchange Resin (MIEX) is able to remove both dissolved organic and bromide from water, in this study the MIEX was used as pretreatment of ozonation to see its effect on bormate and THM control. Both synthetic source water, which contained humic acid as model organic compound, and field source water from Kinmen Water Works were investigated.

    The results show that MIEX has high NPDOC removal for both synthetic and field source waters. MIEX pretreatment also significantly reduced the ozone demand of the source waters. For bromate control, when the synthetic water was directly ozonated, the concentration of bromate formed was as high as 350 μg/L. However, the bromate concentration can be dropped to about 150 μg/L, if ozonation was preceded by MIEX. For field source water, the bormate concentration from direct ozonation was about 50 μg/L, still higher than that allows by local drinking water standards, which is 10 μg/L. With MIEX pretreatment, the bromate concentration of the ozonated water was lower than the detection limit of the instrument (MDL 4 μg/L). Therefore, MIEX pretreatment is effective for controlling bromate formation form ozonation of both synthetic source water and real Kinmenwater.

    誌謝…………………………………………………………………I 摘要……………………………………………………………………III Abstract………………………………………………………………V 目錄……………………………………………………………………VII 表目錄…………………………………………………………………XI 圖目錄………………………………………………………………XIII 照片目錄…………………………………………………………XV 第一章 前言…………………………………………………………1 第二章 文獻回顧………………………………………………………3 2-1 臭氧…………………………………………………………………3 2-1-1 臭氧在水中的特性……………………………………………3 2-1-2 臭氧於水處理上的應用………………………………………4 2-1-3 臭氧於水中與水中物質之反應………………………………5 2-2 臭氧與水中溶質之反應途徑………………………………………6 2-2-1 臭氧與無機物之反應…………………………………………6 2-2-2 臭氧與有機物之反應…………………………………………7 2-3 臭氧處理後可能產生之副產物……………………………………8 2-3-1 有機臭氧副產物………………………………………………8 2-3-2臭氧處理副產物之溴酸根離子………………………………9 2-3-3 溴酸根離子(BrO3-)生成之影響因子………………………12 2-4 MIEX樹脂之性質及功能………………………………………16 2-4-1 離子交換樹脂之一般特性…………………………………11 2-4-2 MIEX樹脂特性……………………………………………18 2-4-3 MIEX樹脂程序………………………………………………18 2-4-4 MIEX樹脂處理之相關研究………………………………21 2-4-5 MIEX實廠應用例子…………………………………………24 第三章 實驗材料、程序及方法………………………………………25 3-1 實驗流程………………………………………………………25 3-1-1 MIEX樹脂取得…………………………………………25 3-1-2採樣………………………………………………………26 3-1-3有無MIEX處理之比較……………………………………26 3-2 實驗方法…………………………………………………………28 3-2-1 MIEX接觸反應……………………………………………28 3-2-2臭氧試驗………………………………………………29 3-3一般水質參數之分析方法………………………………………33 3-3-1水中陰離子(Br-、BrO3-)……………………………………33 3-3-2 pH值分析………………………………………………36 3-3-3非揮發性溶解性有機碳之分析……………………………36 3-3-4 UV254吸光值…………………………………………………37 3-3-5三鹵甲烷(THM)之分析…………………………………37 3-3-6氣相中臭氧之分析………………………………………41 3-3-7水相溶解性臭氧濃度分析…………………………………42 第四章 結果與討論……………………………………………………43 4-1人工原水及金門原水水質特性……………………………………43 4-2 MIEX對人工原水及金門原水的處理效果………………………44 4-3人工原水有無經MIEX處理後加入臭氧的結果…………………48 4-3-1有無經MIEX前處理之臭氧傳輸量與殘餘臭氧量關係……50 4-3-2有無MIEX處理對UV254吸光值之影響……………………51 4-3-3有無MIEX處理對Br離子及BrO3離子的影響……………53 4-4-4有無MIEX處理對4小時THM生成量之影響……………57 4-4金門原水有無經MIEX處理後之結果……………………………58 4-4-1有無經過MIEX處理之臭氧傳輸量與UV254值之關係…59 4-4-2有無經過MIEX處理之臭氧傳輸量與NPDOC值之關係…60 4-4-3有無MIEX處理對Br離子及BrO3離子的影響……………62 第五章 結論與建議……………………………………………………64 5-1 結論……………………………………………………………64 5-2 建議……………………………………………………………65 參考文獻………………………………………………………………66 附錄A 檢量線………………………………………………………73 附錄B 原始數據……………………………………………………79

    Amy, G. M. (1993), “Threshold Levels for Bromate Ion Formation in Drinking Water”, IWSA Workshop, Paris.

    Anderson, R., (1988) Handbook of Separation Techniques for Chemical Engineers. 2nd ed., McGraw-Hill Inc., New York, pp.1-404.

    AWWA (1999) Water Quality and Treatment, McGraw-Hill, New York, p.6.4

    Bourke, M. F., Harrison, S., Long, B. and Lebeau, T. (2001) “MIEX Resin Pretreatment Followed by Microfiltration as an Alternative to Nanofiltration for DBP Precursor Removal”, Proceedings of AWWA Membrane Technology Conference.

    Bourke, M. F., Hammann D. K., Cory Topham (2004) “Field Report: Evaluation of a Magnetic Ion Exchange Resin to Meet DBP Regs at the Village of Palm Springs”

    Bourke, M. F., Hammann D. K., Cory Topham, and Jake Blattman (2004) “Evaluation of a Magnetic Ion Exchange Resin and Ozone to Achieve USEPA Stage 1 DBP Standards at the Village of Palm Springs, Florida”, 2004 Water Quality Technology Conference and Exposition, San Antonio, TX.

    Cadee, K., O’Leary, B., Smith, P., Slunjski, M. and Bourke, M. (2000) “World’s First Magnetic Ion Exchange (MIEX) Water Treatment Plant to be Installed in Western Australia”, Proceeding of AWWA Conference, June 11~15, Denver, U.S.A.

    Chrostowski, P. C., Dietrich, A. M., and Suffet. I. H. (1982) “Laboratory Testing of Ozonation System Prior to Pilot-plant Operations”, Journal American Water Works Association 74 (1):38-43.

    Cook, D., Chow, G. and Drikas, M. (2001) “Laboratory Study of Conventional Alum Treatment versus MIEX Treatment for Removal of Natural Organic Matter”, Proceedings of the 19th Federal AWA Convetion, April 1~4, Canberra Australia.

    Glaze, W. H. (1986), “Reaction Products of Ozone A Review” Environmental Health Perspectives 69:151-158 1986

    Glaze, W. H. Weinberg, H. S. and Cavanagh, J. E. (1993), “Evaluating the Formation of Brominated DBPS During Ozonation”, American Water Works Association Journal 85 (1):96-103.

    Hautman, D. P. and Bolyard, M. (1992), “Using Ion Chromatography to Analyzer Inorganic Disinfection By-Products”, American Water Works Association Journal 85 (11):88-93.

    Hoigne, J. and Bader H. (1988), “The Formation of Trichloronitromethane Chloropicrin and Chloroform In A Combined Ozonation-Chlorination Treatment of Drinking Water”, Water Research 22 (3):313-320.

    Jacangelo, J. G., Patania, N. L., Reagan, K. M., et al. (1989), “Ozonation Assessing Its Role In The Formation And Control of Disinfection By-Products”, American Water Works Association Journal 81 (8): 74-84.

    Krasner, S. W., Glaze, W. H. and Weinberg, H. S. (1993), “Formation and Control of Bromate During Ozonation of Waters Containing Bromate Ion”, American Water Works Association Journal 85 (1): 73-81.

    Krasner, S. W., Gramith, J. T., Coffey, B. M. and Yates, R. S. (1993), “Impact of Water Quality and Operational Parameters on the Formation and Control of Bromate During Ozonation”, IWSA Workshop, Paris.

    Lange, R., Tattersall, J., Botica, C. and Smith, P. (2001) “Design and Construction of the World’s First Large Scale MIEX Water Treatment Plant”, Proceedings of the 19th Federal AWA Convention, April 1~4, Canberra, Austraila.

    Langlais, B., Reckhow, D. A. and Brink, D. A. (1991), “Ozone in Water Treatment:Application and Engineering, Lewis Publishers, Chelsea, Michigan.

    Legube, B., Koudjonou, B. K., Croue, J. P. and Merlet, N. (1993), “Influence of the Presence of Natural Organic Matter on Bromate Formation by Ozonation”, Proceedings IWSA Workshop, Paris.

    Lykins, B. W. JR., Koffskey, W. (1986), “Products Identified At An Alternative Disinfection Pilot Plant”, Environmental Health Perspectives 69:119-128.

    Miller, G. W. et al. (1978), “An Assement of Ozone and Chlorine Dioxide Oxide Technologles for Treatment of Muncipal Water Supplies”, EPA 600 (2):78-147. MERL, USEPA, Cincinnati, Ohio

    Nick, H. et al. (1999) “Tailoring of 4-Vinylpyridine-Based Resins for Hydrolytic Degradation and Solubilisation,” Tetrahedron 55 (31):9585-9594.

    Semmens, M. J., Barckhardt, M., Schuler, D., Davich, P., Slinjski, M., Bourke, M. and Nguyen, H. (2000) “An Evaluation of Magnetic Ion Exchange MIEX for NOM Removal,” Proceeding of AWWA annual Conference, Denver, Co.

    Siddiqui, M. S. and Amy, G. (1993), “Factors Affecting DBP Formation During Ozone-Bromide Reaction,” American Water Works Association Journal 85 (1):63-72.

    Siddiqui, M. S., Amy, G. L. and Rice, R. Q. (1995), “Bromate Ion Formation:A Critical Review,” American Water Works Association Journal 87 (10):58-70.

    Singer, P. C. and Bilyk, K. (2000) “Enhanced Coagulation Using a Magnetic Ion Exchange Resin,” Proceeding of AWWA Water Qulaity Technology Conference, Salt Lake City, Utah.

    Singer, P. C., and Johnson, C. J. (2004) “Impact of a Magnetic Ion Exchange Resin on Ozone Demand and Bromate Formation During Drinking Water Treatment”, Water Research 38 (17): 3738-3750.

    Slunjski, M., Cadee, K. and Tattersall, J. (2000) “MIEX Resin Water Treatment Process”, Proceedings of Aquatech Amsterdam, September, Amsterdam, the Netherlands.

    Slunjski, M., Nguyen, H., Ballard, M., Eldridge, R., Morran, J., Drikas, M., O’Leary, B., and Smith, P. (2002) “MIEX-Good Research Commercialised”, Water Journal of the AWA, 29 (2):42-51.

    Song, R., Minear, R., Westerhoff, P. and Amy, G. (1996), “Ozone-Bromide Interactions with NOM Separated by XAD-8 Resin and UF/RO Membrane Methods”, Chap.10 in Disinfection by-products in Water Treatment, R. A. Minear and G.. L. Amy, εds., Lewis Publishers, New York, pp.235-254.

    von Gunten, U. and Hoigne, J. (1994), “Bromate Formation During Ozonation of Bromide-Containing Waters:Interaction of Ozone and Hydroxyl Radical Reaction.”, Environ. Sci & Technol., 28 (7):1234-1242

    Yamada, H. (1993), “By-products of Ozonation of Low Bromide Waters and Reduction of the By-Products by Activated Carbon”, 11th Ozone World Congress, San Francisco, Calif.

    環保署環境檢驗所(1992) “水質檢驗方法彙編”.

    葉宣顯(2004) “以MIEX離子交換樹脂處理高總有機碳原水之研究”,中華民國自來水協會.

    周松霖(2005) “前氧化劑處理水中藻類最佳化操作技術之研究”, 碩士論文, 國立成功大學環境工程研究所.

    下載圖示
    2007-08-23公開
    QR CODE