| 研究生: |
洪稚軒 Hung, Chih-Hsuan |
|---|---|
| 論文名稱: |
普魯士藍類似物從實心到框架的結構轉變 Prussian Blue Analogues Structure Conversion from Solid to Frame |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 普魯士藍類似物 、奈米框架 、酸蝕 |
| 外文關鍵詞: | Prussian blue analogue, nanoframes, etching |
| 相關次數: | 點閱:42 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
普魯士藍類似物(Prussian blue analogues, PBAs)為一類結構類似普魯士藍的化合物,其大多數擁有普魯士藍安全且便宜的特性,因此常被科學家們應用在生醫、能源等領域。
而在本篇研究中,我們直接將鈷鐵普魯士藍(CoPB)酸蝕並加熱,成功以不使用保護劑的方法將其形貌從正立方體轉變為中空框架。且同時我們發現其結構往普魯士藍變化,產生了原本本屬於普魯士藍且CoPB 沒有的性質,如近紅外光區產生吸收。而我們也將錳鐵普魯士藍(MnPB)和鎳鐵普魯士藍(NiPB)進行同樣的反應,發現他們同樣會產生普魯士藍的性質,這讓我們產生興趣並嘗試推論出此機構。希望藉由了解此機構讓更多的PBAs 透過此反應獲得普魯士藍的特性,並產生新的應用。
Prussian blue analogues (PBAs) is a family of compounds which have similar structure to Prussian blue. Most of them are save and inexpensive just like Prussian blue. And many scientists have study their application about medical, energy, etc. So, we tried to modify PBAs structure and morphology to explore new realm of application.
In this study, we synthesized cobalt-iron Prussian blue (CoPB) first and treated it with HCl and acid directly. We can successfully get hollow-frame cobalt-iron Prussian blue (h-CoPB) without protecting agent in this method. Surprisingly, the structure of h-CoPB became Prussian blue-like structure. And it began behaving Prussian blue character which CoPB didn’t show. For instance, h-CoPB had near-infrared absorption. After that, we did same experiment for manganese-iron Prussian blue (MnPB) and nickel-iron Prussian blue (NiPB). And they also showed similar structure conversion phenomenon to CoPB. This result let us want to figure out the mechanism and find more PBAs can be endow Prussian blue character to expand their application potential.
1.Sun, H. Y.; Zhang, W.; Hu, M., Prussian Blue Analogue Mesoframes for Enhanced Aqueous Sodium-ion Storage. Crystals 2018, 8 (1), 14.
2.Sato, O., Switchable molecular magnets. Proc. Jpn. Acad. Ser. B-Phys. Biol. Sci. 2012, 88 (6), 213-225.
3.Verdaguer, M.; Galvez, N.; Garde, R.; Desplanches, C., Electrons at Work in Prussian Blue Analogues. The Electrochemical Society Interface 2002, 11 (3), 28-32.
4.Kaye, S. S.; Long, J. R., Hydrogen storage in the dehydrated Prussian blue analogues M-3 Co(CN)(6) (2) (M = Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 2005, 127 (18), 6506-6507.
5.Wang, Q. Q.; He, S. F.; Wang, N.; Zhao, J. H.; Fang, J.; Shen, W. G., Synthesis of CoFe Prussian blue analogue/carbon nanotube composite material and its application in the catalytic epoxidation of styrene. New J. Chem. 2016, 40 (4), 3244-3251.
6.Cai, X. J.; Gao, W.; Zhang, L. L.; Ma, M.; Liu, T. Z.; Du, W. X.; Zheng, Y. Y.; Chen, H. R.; Shi, J. L., Enabling Prussian Blue with Tunable Localized Surface Plasmon Resonances: Simultaneously Enhanced Dual-Mode Imaging and Tumor Photothermal Therapy. ACS Nano 2016, 10 (12), 11115-11126.
7.Aguila, D.; Prado, Y.; Koumousi, E. S.; Mathoniere, C.; Clerac, R., Switchable Fe/Co Prussian blue networks and molecular analogues. Chem. Soc. Rev. 2016, 45 (1), 203-224.
8.Liu, H.; Du, X. L.; Liang, C. H.; Liu, P.; Xu, J. F.; Fang, J. A.; Shen, W. G.; Zhao, J. H., Morphologies and Magnetic Properties of Cobalt-Iron Prussian Blue Analogues Nanoparticles Synthesized in Microemulsion. Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 2010, 40 (10), 805-811.
9.Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K., Photoinduced magnetization of a cobalt-iron cyanide. Science 1996, 272 (5262), 704-705.
10.Wang, Q. Q.; Wang, N.; He, S. F.; Zhao, J. H.; Fang, J.; Shen, W. G., Simple synthesis of Prussian blue analogues in room temperature ionic liquid solution and their catalytic application in epoxidation of styrene. Dalton Trans. 2015, 44 (28), 12878-12883.
11.Tokoro, H.; Matsuda, T.; Nuida, T.; Moritomo, Y.; Ohoyama, K.; Dangui, E. D. L.; Boukheddaden, K.; Ohkoshi, S. I., Visible-light-induced reversible photomagnetism in rubidium manganese hexacyanoferrate. Chem. Mat. 2008, 20 (2), 423-428.
12.Wang, J. G.; Zhang, Z. Y.; Zhang, X. Y.; Yin, X. M.; Li, X.; Liu, X. R.; Kang, F. Y.; Wei, B. Q., Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 2017, 39, 647-653.
13.Hou, X. C.; Zhu, G. Y.; Niu, X. Y.; Dai, Z. Y.; Yin, Z. H.; Dong, Q. C.; Zhang, Y. Z.; Dong, X. C., Ternary transition metal oxide derived from Prussian blue analogue for high-performance lithium ion battery. J. Alloy. Compd. 2017, 729, 518-525.
14.Jiang, X.; Zhang, T. R.; Yang, L. Q.; Li, G. C.; Lee, J. Y., A Fe/Mn-Based Prussian Blue Analogue as a K-Rich Cathode Material for Potassium-Ion Batteries. ChemElectroChem 2017, 4 (9), 2237-2242.
15.Wessells, C. D.; Peddada, S. V.; Huggins, R. A.; Cui, Y., Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries. Nano Lett. 2011, 11 (12), 5421-5425.
16.Gomes, W. J. A. S.; de Oliveira, C.; Huguenin, F., Energy Harvesting by Nickel Prussian Blue Analogue Electrode in Neutralization and Mixing Entropy Batteries. Langmuir 2015, 31 (31), 8710-8717.
17.Porada, S.; Shrivastava, A.; Bukowska, P.; Biesheuvel, P. M.; Smith, K. C., Nickel Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish Water. Electrochimica Acta 2017, 255, 369-378.
18.Li, J.; Shen, W. T.; Kang, B.; Chang, S. Q.; Dai, Y. D., Preparation of Prussian-blue analogue/carbon nanotube sponge adsorbent for cesium. Micro Nano Lett. 2014, 9 (11), 825-828.
19.Xuan, C.; Wang, J.; Xia, W.; Peng, Z.; Wu, Z.; Lei, W.; Xia, K.; Xin, H. L.; Wang, D., Porous Structured Ni–Fe–P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (31), 26134-26142.
20.Yuancai, G.; Pei, D.; R., C. S.; M., A. P.; Mingxin, Y.; Jianfeng, S., Transforming Nickel Hydroxide into 3D Prussian Blue Analogue Array to Obtain Ni2P/Fe2P for Efficient Hydrogen Evolution Reaction. Advanced Energy Materials 0 (0), 1800484.
21.Roy, X.; Hui, J. K. H.; Rabnawaz, M.; Liu, G. J.; MacLachlan, M. J., Prussian Blue Nanocontainers: Selectively Permeable Hollow Metal-Organic Capsules from Block lonomer Emulsion-Induced Assembly. J. Am. Chem. Soc. 2011, 133 (22), 8420-8423.
22.Hu, M.; Torad, N. L.; Yamauchi, Y., Preparation of Various Prussian Blue Analogue Hollow Nanocubes with Single Crystalline Shells. Eur. J. Inorg. Chem. 2012, (30), 4795-4799.
23.Cai, X. J.; Gao, W.; Ma, M.; Wu, M. Y.; Zhang, L. L.; Zheng, Y. Y.; Chen, H. R.; Shi, J. L., A Prussian Blue-Based Core-Shell Hollow-Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pH-Responsive Longitudinal Relaxivity. Adv. Mater. 2015, 27 (41), 6382-6389.
24.Nai, J. W.; Guan, B. Y.; Yu, L.; Lou, X. W., Oriented assembly of anisotropic nanoparticles into frame-like superstructures. Sci. Adv. 2017, 3 (8), 10.
25.Zhang, W.; Zhao, Y. Y.; Malgras, V.; Ji, Q. M.; Jiang, D. M.; Qi, R. J.; Ariga, K.; Yamauchi, Y.; Liu, J.; Jiang, J. S.; Hu, M., Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angew. Chem.-Int. Edit. 2016, 55 (29), 8228-8234.
26.Irving, H.; Williams, R. J. P., THE STABILITY OF TRANSITION-METAL COMPLEXES. Journal of the Chemical Society 1953, (OCT), 3192-3210.
27.Kandanapitiye, M. S.; Wang, F. J.; Valley, B.; Gunathilake, C.; Jaroniec, M.; Huang, S. P. D., Selective Ion Exchange Governed by the Irving-Williams Series in K2Zn3 Fe(CN)(6) (2) Nanoparticles: Toward a Designer Prodrug for Wilson's Disease. Inorg. Chem. 2015, 54 (4), 1212-1214.
28.Li, W. P.; Su, C. H.; Tsao, L. C.; Chang, C. T.; Hsu, Y. P.; Yeh, C. S., Controllable CO Release Following Near Infrared Light-Induced Cleavage of Iron Carbonyl Derivatized Prussian Blue Nanoparticles for CO-Assisted Synergistic Treatment. ACS Nano 2016, 10 (12), 11027-11036.
29.Liu, Y. T.; Shen, W.; Li, Q.; Shu, J. N.; Gao, L. F.; Ma, M. M.; Wang, W.; Cui, H., Firefly-mimicking intensive and long-lasting chemiluminescence hydrogels. Nat. Commun. 2017, 8, 7.
30.Kandanapitiye, M. S.; Gott, M. D.; Sharits, A.; Jurisson, S. S.; Woodward, P. M.; Huang, S. P. D., Incorporation of gallium-68 into the crystal structure of Prussian blue to form (KGaxFe1-x)-Ga-68 Fe(CN)(6) nanoparticles: toward a novel bimodal PET/MRI imaging agent. Dalton Trans. 2016, 45 (22), 9174-9181.
31.Shiba, F.; Fujishiro, R.; Kojima, T.; Okawa, Y., Preparation of Monodisperse Cobalt(II) Hexacyanoferrate(III) Nanoparticles Using Cobalt Ions Released from aCitrate Complex. Journal of Physical Chemistry C. 2012, 116 (5), 3394-3399.
32.Zhang, W.; Wang, L. L.; Zhang, N.; Wang, G. F.; Fang, B., Functionalization of Single-Walled Carbon Nanotubes with Cubic Prussian Blue and Its Application for Amperometric Sensing. Electroanalysis. 2009, 21 (21), 2325-2330.