簡易檢索 / 詳目顯示

研究生: 姜瑋柔
Jiang, Wei-Rou
論文名稱: 自組裝的白蛋白金奈米團簇具備粒線體與細胞核靶向用於膀胱癌光動力治療
Self-assembly of BSA/Au nanoclusters for mitochondria- and nucleus-targeted photodynamic therapy of bladder cancer
指導教授: 黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 72
中文關鍵詞: 粒線體靶向細胞核靶向光動力療法( PDT)BSA
外文關鍵詞: BSA, mitochondrial targeting, Photodynamic therapy(PDT)
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這裡,我們開發了一種簡單的自組裝反應來製備牛血清白蛋白/金納米糰簇(BSA/Au NCs)。根據 Cryo-EM 圖像和 SEM 圖像觀察,BSA/Au NCs具有~35 nm 和 93 nm 的直徑。與天然 BSA 分子相比,圓二色性 (CD) 光譜表明 BSA/Au NCs 的形成有輕微的折疊變化。由於蛋白質結構和 Au NCs 的整合,BSA/Au 在 450 nm 和 660 nm 處具有雙重熒光特性。有趣的是,根據BSA / Au和細胞核的共定位共聚焦圖像,肽框架有助於將Au納米簇遞送到細胞核中。通過靶向膀胱癌細胞的醣蛋白受體,將 4-羧基苯基硼酸 (CPBA) 表面修飾到 BSA/Au NCs 表面後內吞作用增強。將TPP((3-羧丙基)三苯基phospho)整合到BSA / Au-CPBA NCs中可以藉TPP轉運到粒線體,這已通過使用Mito Tracker Green進行了證實。這些BSA / Au-CPBA NCs還裝有亞甲基藍(MB)光敏劑,用於惡性癌細胞進行光動力治療(PDT)。經過 MTT 分析,通過用 BSA/Au NCs 處理 PDT,在Au濃度為10 ppm 時 MB49 膀胱癌的細胞活性在BSA/Au NCs、BSA/Au-CPBA NCs和 BSA/Au-CPBA/TPP NCs 處理下分別降低至61.48 %, 56.39 % 和 26.26% (照光10分鐘)。DCFHDA染料被用來證明在MB49細胞中產生了大量的ROS,用γ-H2Ax分析闡明了細胞核和粒線體PDT對細胞的更明顯損傷。

    In this study, we develop a novel self-assembly reaction to prepare bovine serum albumin/gold nanoclusters (BSA/Au NCs). The hydride particle of BSA/Au NCs possessed ~35 nm and 93 nm in diameter according to the Cryo-EM image and SEM image observations. Circular Dichroism (CD) spectra demonstrated a slight folding change in the formation of BSA/Au NCs when compared with nature BSA molecule. Due to the integration of the protein structure and Au NCs, BSA/Au performed dual fluorescence properties at 450 nm and 660 nm. Intriguingly, the peptide framework assisted to deliver the Au nanocluster into cell nucleus according to the co-localization confocal images of BSA/Au and nucleus. The endocytosis was enhanced after the surface modification of the 4-carboxyphenylboronic acid (CPBA) onto the surface of BSA/Au NCs via the targeting to the glycoprotein receptors of bladder cancer cells. The integration of TPP ((3-Carboxypropyl) Triphenyl phosphonium) into BSA/Au-CPBA NCs could transport the NPs to the mitochondria, which was confirmed by using Mito Tracker Green. These BSA/Au-CPBA NCs were further loaded with methylene blue photosensitizer for photodynamic therapy in malignant cancer cells. According to the MTT examination, the cell viability of MB49 bladder cancer decreased to 61.48 %, 56.39 % and 26.26% (treat for 10 min) at 10 ppm [Au] by treating PDT with BSA/Au NCs, BSA/Au-CPBA NCs, and BSA/Au-CPBA/TPP NCs groups. DCFHDA dye was utilized to prove the large amount of the ROS generation in the MB49 cells by BSA/Au-CPBA/TPP NCs, elucidating a more pronounced damage of the cells from the PDT of nucleus and mitochondrial with γ-H2Ax analysis.

    中文摘要 I Abstract II 誌謝 III Contents IV List of Figures VII List of Tables VII Chapter 1. Introduction - 1 - 1.1 Bladder Cancer - 1 - 1.2 MB49 Cells - 1 - 1.3 Photodynamic Therapy (PDT) - 2 - 1.3.1 Photodynamic Therapy - 2 - 1.3.2 Singlet Excited Oxygen (1O2) - 2 - 1.3.3 Subcellular localization - 3 - 1.4 Dual-Targeting - 4 - 1.5 Nanoclusters - 5 - 1.6 Bovine Serum Albumin (BSA) - 6 - Chapter 2. Motivation - 12 - Chapter 3. Method and Materials - 13 - 3.1 Materials - 13 - 3.2 Equipment - 15 - 3.3 Solution Formula - 16 - 3.3.1 MTT Assay Solution - 16 - 3.3.2 DAPI Stock Solution - 16 - 3.3.3 DCFH-DA Stock Solution - 16 - 3.3.4 Mito Tracker Green Stock Solution - 16 - 3.3.5 Acridine Orange (AO) Stock Solution - 16 - 3.4 Method - 17 - 3.4.1 Synthesis of BSA/Au NCs - 17 - 3.4.2 Molecular Modification - 17 - 3.4.3 Adsorption - 19 - 3.4.4 RNO/imidazole for Photo-induced 1O2 Detection - 20 - 3.4.5 DCFH-DA for ROS Detection - 21 - 3.4.6 Acridine orange (AO) - 22 - 3.4.7 Analysis of Double-Strand Breaks (DSBs) with γ-H2Ax - 23 - 3.4.8 Mitochondrial Membrane Potential Changes (JC-1) - 24 - 3.4.9 Cellular Viability Test MTT assay - 24 - 3.4.10 In vitro PDT Efficacy in MB49 Cancer Cells - 25 - 3.4.11 Organelle Colocalization - 26 - 3.4.12 In Vivo Animal Experiments - 26 - Chapter 4. Results and Discussion - 34 - 4.1 Characteristic - 34 - 4.2 Mechanism of Energy Transfer between BSA/Au NCs and MB - 36 - 4.3 Type-II Reaction of PDT - 38 - 4.3.1 Detect singlet oxygen (1O2) - 38 - 4.3.2 ROS Generation in cell - 39 - 4.4 Material accumulation - 40 - 4.5 Organelle colocalization - 40 - 4.5.1 Pearson's correlation coefficient (PCC) - 41 - 4.6 Lysosome escape - 42 - 4.7 DNA Damage - 43 - 4.8 Mitochondrial Membrane Potential Changes - 44 - 4.9 In Vitro Cellular Viability of BSA/Au NCs - 45 - 4.9.1 Cytotoxicity of BSA/Au NCs in the Dark - 45 - 4.9.2 Photodynamic Therapy of BSA/Au NCs in vitro - 46 - 4.10 In vivo - 46 - Chapter 5. Conclusion 65 References 67

    1. Alberto, M.; Cuello, H. A.; Gulino, C. A.; Pifano, M.; Belgorosky, D.; Gabri, M. R.; Eijan, A. M.; Segatori, V. I., Expression of bladder cancer-associated glycans in murine tumor cell lines. Oncol Lett 2019, 17 (3), 3141-3150.
    2. Kirkali, Z.; Chan, T.; Manoharan, M.; Algaba, F.; Busch, C.; Cheng, L.; Kiemeney, L.; Kriegmair, M.; Montironi, R.; Murphy, W. M.; Sesterhenn, I. A.; Tachibana, M.; Weider, J., Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology 2005, 66 (6 Suppl 1), 4-34.
    3. Chan, E.; Patel, A.; Heston, W.; Larchian, W., Mouse orthotopic models for bladder cancer research. BJU Int 2009, 104 (9), 1286-91.
    4. Zhang, N.; Li, D.; Shao, J.; Wang, X., Animal models for bladder cancer: The model establishment and evaluation (Review). Oncol Lett 2015, 9 (4), 1515-1519.
    5. Smolensky, D.; Rathore, K.; Cekanova, M., Molecular targets in urothelial cancer: detection, treatment, and animal models of bladder cancer. Drug Des Devel Ther 2016, 10, 3305-3322.
    6. Lodillinsky, C.; Rodriguez, V.; Vauthay, L.; Sandes, E.; Casabe, A.; Eijan, A. M., Novel invasive orthotopic bladder cancer model with high cathepsin B activity resembling human bladder cancer. J Urol 2009, 182 (2), 749-55.
    7. Stowell, S. R.; Ju, T.; Cummings, R. D., Protein glycosylation in cancer. Annu Rev Pathol 2015, 10, 473-510.
    8. Fuster, M. M.; Esko, J. D., The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005, 5 (7), 526-42.
    9. Vajaria, B. N.; Patel, P. S., Glycosylation: a hallmark of cancer? Glycoconj J 2017, 34 (2), 147-156.
    10. Tuccillo, F. M.; de Laurentiis, A.; Palmieri, C.; Fiume, G.; Bonelli, P.; Borrelli, A.; Tassone, P.; Scala, I.; Buonaguro, F. M.; Quinto, I.; Scala, G., Aberrant glycosylation as biomarker for cancer: focus on CD43. Biomed Res Int 2014, 2014, 742831.
    11. Pinho, S. S.; Reis, C. A., Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 2015, 15 (9), 540-55.
    12. Pearce, O. M. T., Cancer glycan epitopes: biosynthesis, structure and function. Glycobiology 2018, 28 (9), 670-696.
    13. Daniell, M. D.; Hill, J. S., A history of photodynamic therapy. Aust N Z J Surg 1991, 61 (5), 340-8.
    14. Dolmans, D. E.; Fukumura, D.; Jain, R. K., Photodynamic therapy for cancer. Nat Rev Cancer 2003, 3 (5), 380-7.
    15. Calixto, G. M. F.; Bernegossi, J.; De Freitas, L. M.; Fontana, C. R.; Chorilli, M., Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 2016, 21 (3), 342.
    16. Benov, L., Photodynamic therapy: current status and future directions. Med Princ Pract 2015, 24 Suppl 1, 14-28.
    17. Han, R.; Zhao, M.; Wang, Z.; Liu, H.; Zhu, S.; Huang, L.; Wang, Y.; Wang, L.; Hong, Y.; Sha, Y.; Jiang, Y., Super-efficient in Vivo Two-Photon Photodynamic Therapy with a Gold Nanocluster as a Type I Photosensitizer. ACS Nano 2020, 14 (8), 9532-9544.
    18. Douguert, T.; Mac Donald, I., Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines 2001, 5, 105-129.
    19. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B. C.; Golab, J., Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011, 61 (4), 250-81.
    20. Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R. K., The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 2011, 40 (1), 340-62.
    21. Flors, C.; Fryer, M. J.; Waring, J.; Reeder, B.; Bechtold, U.; Mullineaux, P. M.; Nonell, S.; Wilson, M. T.; Baker, N. R., Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green. J Exp Bot 2006, 57 (8), 1725-34.
    22. Skovsen, E.; Snyder, J. W.; Lambert, J. D.; Ogilby, P. R., Lifetime and diffusion of singlet oxygen in a cell. J Phys Chem B 2005, 109 (18), 8570-3.
    23. Cheng, H.; Zheng, R. R.; Fan, G. L.; Fan, J. H.; Zhao, L. P.; Jiang, X. Y.; Yang, B.; Yu, X. Y.; Li, S. Y.; Zhang, X. Z., Mitochondria and plasma membrane dual-targeted chimeric peptide for single-agent synergistic photodynamic therapy. Biomaterials 2019, 188, 1-11.
    24. Bio, M.; Rahman, K. M. M.; Lim, I.; Rajaputra, P.; Hurst, R. E.; You, Y., Singlet oxygen-activatable Paclitaxel prodrugs via intermolecular activation for combined PDT and chemotherapy. Bioorg Med Chem Lett 2019, 29 (12), 1537-1540.
    25. Liu, H. W.; Hu, X. X.; Li, K.; Liu, Y.; Rong, Q.; Zhu, L.; Yuan, L.; Qu, F. L.; Zhang, X. B.; Tan, W., A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy. Chem Sci 2017, 8 (11), 7689-7695.
    26. Green, D. R.; Reed, J. C., Mitochondria and apoptosis. science 1998, 1309-1312.
    27. Galluzzi, L.; Larochette, N.; Zamzami, N.; Kroemer, G., Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 2006, 25 (34), 4812-30.
    28. Hoye, A. T.; Davoren, J. E.; Wipf, P.; Fink, M. P.; Kagan, V. E., Targeting mitochondria. Acc Chem Res 2008, 41 (1), 87-97.
    29. Raha, S.; Robinson, B. H., Mitochondria, oxygen free radicals, disease and ageing. Trends in biochemical sciences 2000, 25 (10), 502-508.
    30. Li, N.; Yu, L.; Wang, J.; Gao, X.; Chen, Y.; Pan, W.; Tang, B., A mitochondria-targeted nanoradiosensitizer activating reactive oxygen species burst for enhanced radiation therapy. Chem Sci 2018, 9 (12), 3159-3164.
    31. Luo, S.; Tan, X.; Fang, S.; Wang, Y.; Liu, T.; Wang, X.; Yuan, Y.; Sun, H.; Qi, Q.; Shi, C., Mitochondria‐targeted small‐molecule fluorophores for dual modal cancer phototherapy. Advanced Functional Materials 2016, 26 (17), 2826-2835.
    32. Wang, Q.; Xu, J.; Geng, R.; Cai, J.; Li, J.; Xie, C.; Tang, W.; Shen, Q.; Huang, W.; Fan, Q., High performance one-for-all phototheranostics: NIR-II fluorescence imaging guided mitochondria-targeting phototherapy with a single-dose injection and 808 nm laser irradiation. Biomaterials 2020, 231, 119671.
    33. Chan, C. K.; Jans, D. A., Using nuclear targeting signals to enhance non-viral gene transfer. Immunol Cell Biol 2002, 80 (2), 119-30.
    34. Talcott, B.; Moore, M. S., Getting across the nuclear pore complex. Trends in cell biology 1999, 9 (8), 312-318.
    35. Adam, S. A., The nuclear pore complex. Genome Biol 2001, 2 (9), REVIEWS0007.
    36. Kang, B.; Mackey, M. A.; El-Sayed, M. A., Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 2010, 132 (5), 1517-9.
    37. Parker, J. F.; Fields-Zinna, C. A.; Murray, R. W., The story of a monodisperse gold nanoparticle: Au25L18. Acc Chem Res 2010, 43 (9), 1289-96.
    38. Zhao, J. Y.; Cui, R.; Zhang, Z. L.; Zhang, M.; Xie, Z. X.; Pang, D. W., Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters. Nanoscale 2014, 6 (21), 13126-34.
    39. Vankayala, R.; Kuo, C. L.; Nuthalapati, K.; Chiang, C. S.; Hwang, K. C., Nucleus‐targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR‐light activated photodynamic therapy. Advanced Functional Materials 2015, 25 (37), 5934-5945.
    40. Rosenkranz, A. A.; Jans, D. A.; Sobolev, A. S., Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency. Immunol Cell Biol 2000, 78 (4), 452-64.
    41. Xie, R.; Lian, S.; Peng, H.; OuYang, C.; Li, S.; Lu, Y.; Cao, X.; Zhang, C.; Xu, J.; Jia, L., Mitochondria and Nuclei Dual-Targeted Hollow Carbon Nanospheres for Cancer Chemophotodynamic Synergistic Therapy. Mol Pharm 2019, 16 (5), 2235-2248.
    42. Cheng, H.; Yuan, P.; Fan, G.; Zhao, L.; Zheng, R.; Yang, B.; Qiu, X.; Yu, X.; Li, S.; Zhang, X., Chimeric peptide nanorods for plasma membrane and nuclear targeted photosensitizer delivery and enhanced photodynamic therapy. Applied Materials Today 2019, 16, 120-131.
    43. Cui, M.; Zhao, Y.; Song, Q., Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. TrAC Trends in Analytical Chemistry 2014, 57, 73-82.
    44. Hui, S.; Liu, Q.; Huang, Z.; Yang, J.; Liu, Y.; Jiang, S., Gold Nanoclusters-Decorated Zeolitic Imidazolate Frameworks with Reactive Oxygen Species Generation for Photoenhanced Antibacterial Study. Bioconjug Chem 2020, 31 (10), 2439-2445.
    45. Kawamura, K.; Hikosou, D.; Inui, A.; Yamamoto, K.; Yagi, J.; Saita, S.; Kawasaki, H., Ultrasonic Activation of Water-Soluble Au25 (SR) 18 Nanoclusters for Singlet Oxygen Production. The Journal of Physical Chemistry C 2019, 123 (43), 26644-26652.
    46. Varnavski, O.; Ramakrishna, G.; Kim, J.; Lee, D.; Goodson, T., Critical size for the observation of quantum confinement in optically excited gold clusters. J Am Chem Soc 2010, 132 (1), 16-7.
    47. Yau, S. H.; Varnavski, O.; Goodson, T., 3rd, An ultrafast look at Au nanoclusters. Acc Chem Res 2013, 46 (7), 1506-16.
    48. Xia, J.; Wang, X.; Zhu, S.; Liu, L.; Li, L., Gold Nanocluster-Decorated Nanocomposites with Enhanced Emission and Reactive Oxygen Species Generation. ACS Appl Mater Interfaces 2019, 11 (7), 7369-7378.
    49. Ho-Wu, R.; Yau, S. H.; Goodson, T., 3rd, Efficient Singlet Oxygen Generation in Metal Nanoclusters for Two-Photon Photodynamic Therapy Applications. J Phys Chem B 2017, 121 (43), 10073-10080.
    50. Devadas, M. S.; Kim, J.; Sinn, E.; Lee, D.; Goodson III, T.; Ramakrishna, G., Unique ultrafast visible luminescence in monolayer-protected Au25 clusters. The Journal of Physical Chemistry C 2010, 114 (51), 22417-22423.
    51. Li, Z.; Liu, C.; Abroshan, H.; Kauffman, D. R.; Li, G., Au38S2 (SAdm) 20 photocatalyst for one-step selective aerobic oxidations. ACS Catalysis 2017, 7 (5), 3368-3374.
    52. Chib, R.; Butler, S.; Raut, S.; Shah, S.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I., Effect of Quencher, Denaturants, Temperature and pH on the Fluorescent Properties of BSA Protected Gold Nanoclusters. J Lumin 2015, 168, 62-68.
    53. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 2009, 131 (3), 888-9.
    54. Yamamoto, M.; Osaka, I.; Yamashita, K.; Hasegawa, H.; Arakawa, R.; Kawasaki, H., Effects of ligand species and cluster size of biomolecule-protected Au nanoclusters on eff iciency of singlet-oxygen generation. Journal of Luminescence 2016, 180, 315-320.
    55. Yamamoto, M.; Shitomi, K.; Miyata, S.; Miyaji, H.; Aota, H.; Kawasaki, H., Bovine serum albumin-capped gold nanoclusters conjugating with methylene blue for efficient (1)O2 generation via energy transfer. J Colloid Interface Sci 2018, 510, 221-227.
    56. Nain, A.; Tseng, Y.-T.; Lin, Y.-S.; Wei, S.-C.; Mandal, R. P.; Unnikrishnan, B.; Huang, C.-C.; Tseng, F.-G.; Chang, H.-T., Tuning the photoluminescence of metal nanoclusters for selective detection of multiple heavy metal ions. Sensors and Actuators B: Chemical 2020, 321, 128539.
    57. Pu, Z.-F.; Peng, J.; Wen, Q.-L.; Li, Y.; Ling, J.; Liu, P.; Cao, Q., Photocatalytic synthesis of BSA-Au nanoclusters with tunable fluorescence for highly selective detection of silver ion. Dyes and Pigments 2021, 109533.
    58. Poderys, V.; Jarockyte, G.; Bagdonas, S.; Karabanovas, V.; Rotomskis, R., Protein-stabilized gold nanoclusters for PDT: ROS and singlet oxygen generation. J Photochem Photobiol B 2020, 204, 111802.
    59. Lillo, C. R.; Calienni, M. N.; Rivas Aiello, B.; Prieto, M. J.; Rodriguez Sartori, D.; Tuninetti, J.; Toledo, P.; Alonso, S. D. V.; Moya, S.; Gonzalez, M. C.; Montanari, J.; Soler-Illia, G., BSA-capped gold nanoclusters as potential theragnostic for skin diseases: Photoactivation, skin penetration, in vitro, and in vivo toxicity. Mater Sci Eng C Mater Biol Appl 2020, 112, 110891.
    60. Anastasiadis, A.; de Reijke, T. M., Best practice in the treatment of nonmuscle invasive bladder cancer. Therapeutic advances in urology 2012, 4 (1), 13-32.
    61. Green, D. B.; Kawashima, A.; Menias, C. O.; Tanaka, T.; Redelman-Sidi, G.; Bhalla, S.; Shah, R.; King, B. F., Complications of intravesical BCG immunotherapy for bladder cancer. Radiographics 2019, 39 (1), 80-94.
    62. Alsaab, H. O.; Alghamdi, M. S.; Alotaibi, A. S.; Alzhrani, R.; Alwuthaynani, F.; Althobaiti, Y. S.; Almalki, A. H.; Sau, S.; Iyer, A. K., Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers (Basel) 2020, 12 (10).
    63. Kraljić, I.; Mohsni, S. E., A new method for the detection of singlet oxygen in aqueous solutions. Photochemistry and Photobiology 1978, 28 (4‐5), 577-581.
    64. Pierzynska-Mach, A.; Janowski, P. A.; Dobrucki, J. W., Evaluation of acridine orange, LysoTracker Red, and quinacrine as fluorescent probes for long-term tracking of acidic vesicles. Cytometry A 2014, 85 (8), 729-37.
    65. Thome, M. P.; Filippi-Chiela, E. C.; Villodre, E. S.; Migliavaca, C. B.; Onzi, G. R.; Felipe, K. B.; Lenz, G., Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J Cell Sci 2016, 129 (24), 4622-4632.
    66. Wang, X.; Xia, N.; Liu, L., Boronic Acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int J Mol Sci 2013, 14 (10), 20890-912.
    67. Ivanov, A. E.; Solodukhina, N.; Wahlgren, M.; Nilsson, L.; Vikhrov, A. A.; Nikitin, M. P.; Orlov, A. V.; Nikitin, P. I.; Kuzimenkova, M. V.; Zubov, V. P., Reversible conformational transitions of a polymer brush containing boronic acid and its interaction with mucin glycoprotein. Macromol Biosci 2011, 11 (2), 275-84.
    68. Zielonka, J.; Joseph, J.; Sikora, A.; Hardy, M.; Ouari, O.; Vasquez-Vivar, J.; Cheng, G.; Lopez, M.; Kalyanaraman, B., Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017, 117 (15), 10043-10120.
    69. Qu, Q.; Ma, X.; Zhao, Y., Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale 2015, 7 (40), 16677-86.
    70. Holzwarth, G.; Doty, P., The ultraviolet circular dichroism of polypeptides1. Journal of the American Chemical Society 1965, 87 (2), 218-228.
    71. Greenfield, N. J.; Fasman, G. D., Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 1969, 8 (10), 4108-4116.
    72. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nature protocols 2006, 1 (6), 2876.
    73. Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R., ph‐Dependent synthesis of pepsin‐mediated gold nanoclusters with blue green and red fluorescent emission. Advanced Functional Materials 2011, 21 (18), 3508-3515.
    74. Govindaraju, S.; Ankireddy, S. R.; Viswanath, B.; Kim, J.; Yun, K., Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. Scientific reports 2017, 7, 40298.
    75. Schamel, M.; Barralet, J. E.; Groll, J.; Gbureck, U., In vitro ion adsorption and cytocompatibility of dicalcium phosphate ceramics. Biomaterials research 2017, 21 (1), 10.
    76. Poderys, V.; Matulionytė-Safinė, M.; Rupšys, D.; Rotomskis, R., Protein stabilized Au nanoclusters: spectral properties and photostability. Lithuanian Journal of Physics 2016, 56 (1).
    77. Meng, L.; Yin, J.-h.; Yuan, Y.; Xu, N., Near-infrared fluorescence probe: BSA-protected gold nanoclusters for the detection of metronidazole and related nitroimidazole derivatives. Analytical Methods 2017, 9 (5), 768-773.
    78. Redmond, R. W.; Gamlin, J. N., A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 1999, 70 (4), 391-475.
    79. Afri, M.; Frimer, A. A.; Cohen, Y., Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2',7'-dichlorofluorescein (DCF), 2',7'-dichlorodihydrofluorescein (DCFH) and 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer. Chem Phys Lipids 2004, 131 (1), 123-33.
    80. Chen, X.; Zhong, Z.; Xu, Z.; Chen, L.; Wang, Y., 2',7'-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy. Free Radic Res 2010, 44 (6), 587-604.
    81. Tran, C.; Sorg, O.; Carraux, P.; Didierjean, L.; Siegenthaler, G.; Falson, F.; Saurat, J. H., A New Model Using Liposomes That Allow to Distinguish Between Absorption and Oxidative Properties of Sunscreens¶. Photochemistry and photobiology 2002, 75 (1), 1-5.
    82. Rota, C.; Chignell, C. F.; Mason, R. P., Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase:: Possible implications for oxidative stress measurements. Free Radical Biology and Medicine 1999, 27 (7-8), 873-881.
    83. Dunn, K. W.; Kamocka, M. M.; McDonald, J. H., A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 2011, 300 (4), C723-42.
    84. Xue, X.; Qian, C.; Fang, H.; Liu, H. K.; Yuan, H.; Guo, Z.; Bai, Y.; He, W., Photoactivated Lysosomal Escape of a Monofunctional PtII Complex Pt‐BDPA for Nucleus Access. Angewandte Chemie International Edition 2019, 58 (36), 12661-12666.
    85. Brock, D. J.; Kondow-McConaghy, H. M.; Hager, E. C.; Pellois, J. P., Endosomal Escape and Cytosolic Penetration of Macromolecules Mediated by Synthetic Delivery Agents. Bioconjug Chem 2019, 30 (2), 293-304.
    86. Li, R.; Wu, Z.; Wangb, Y.; Ding, L.; Wang, Y., Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotechnol Rep (Amst) 2016, 9, 46-52.
    87. Ono, K.; Kim, S. O.; Han, J., Susceptibility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor alpha-induced cell death. Mol Cell Biol 2003, 23 (2), 665-76.
    88. Jeong, J. H.; Cheol Kang, Y.; Piao, Y.; Kang, S.; Pak, Y. K., miR-24-mediated knockdown of H2AX damages mitochondria and the insulin signaling pathway. Exp Mol Med 2017, 49 (4), e313.
    89. Pal, K.; Roy, S.; Parida, P. K.; Dutta, A.; Bardhan, S.; Das, S.; Jana, K.; Karmakar, P., Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple negative breast cancer therapy in invitro and invivo model. Materials Science and Engineering: C 2019, 95, 204-216.
    90. Qu, B.; Li, Q.-T.; Wong, K. P.; Tan, T. M.; Halliwell, B., Mechanism of clofibrate hepatotoxicity: mitochondrial damage and oxidative stress in hepatocytes. Free Radical Biology and Medicine 2001, 31 (5), 659-669.
    91. Elefantova, K.; Lakatos, B.; Kubickova, J.; Sulova, Z.; Breier, A., Detection of the mitochondrial membrane potential by the cationic dye JC-1 in L1210 cells with massive overexpression of the plasma membrane ABCB1 drug transporter. International journal of molecular sciences 2018, 19 (7), 1985.
    92. Brkovic, N.; Zhang, L.; Peters, J. N.; Kleine‐Doepke, S.; Parak, W. J.; Zhu, D., Quantitative Assessment of Endosomal Escape of Various Endocytosed Polymer‐Encapsulated Molecular Cargos upon Photothermal Heating. Small 2020, 16 (46), 2003639.

    無法下載圖示 校內:2026-09-05公開
    校外:2026-09-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE