簡易檢索 / 詳目顯示

研究生: 黃宏
Huang, Hung
論文名稱: 雙層石墨在電場下對藍道能階的效應
Effects of electric field on Landau levels of bilayer Bernal graphene
指導教授: 林明發
Lin, Min-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 59
中文關鍵詞: 雙層石墨藍道能階電場AB堆疊
外文關鍵詞: electric field, Bernal graphene, Landau levels
相關次數: 點閱:153下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於少層石墨能於實驗上的達成,它們在近年內吸引了很多的關注。除了可當成理想的二維材料,石墨的蜂巢狀結構也使得它具有獨特的電子性質。這些能帶結構會有效地受到層與層交互作用的影響,且會進一步受到外加磁場或電場的調制。在這工作中,我們利用Peierls tight-binding model來計算雙層石墨的磁電子能帶結構,同步考量了外加靜磁場及靜電場及層與層交互作用。外加場對於Landau level的能量及波函數是被仔細地討論。

      雙層石墨在低頻是表現成兩對的拋物線能帶。而垂直磁場會將這二維的電子能態量子化成兩群的Landau levels。Landau state的簡併度會因外加電場的破壞;而分裂的能量差會隨著電場而增大。其中,能量最低的兩個Landau levels變化幅度最為明顯。Landau level的波函數可由4個次晶格所組成。波函數於次晶格間的分佈,會隨著電場及磁場大小而改變。

    Few-layer graphenes have attracted a lot of attentions since they are achieved by recent experiments. Graphene is kind of ideal two-dimensional materials, and its honeycomb lattice results in the extraordinary electronic properties. The energy bands would be effectively influenced the interlayer interactions, and significantly modulated by external magnetic or electric fields. In this work, we employ the Peierls tight-binding model to evaluate the magneto-electronic structures of bilayer Bernal graphene. The magnetic and electric field, together with the interlayer interactions, are taken into account simultaneously. The field dependence of Landau energies and wave functions are investigated in detail.

      The bilayer Bernal graphene possesses two pairs of parabolic bands in the low energy regions. And the perpendicular magnetic field substantially quantizes these energy bands into two groups of Landau levels. The degeneracy of these Landau states would be lifted by the external electric field, where the energy spacings split are broadened with field strength. The variation degree of the two lowest Landau levels is particularly evident. In addition, the wave function of Landau levels is governed by four sublattices. The way the wave function distributed over its subblattices would further vary with electric or magnetic fields.

    第一章 導論…………………………………………………………1 第二章 理論與方法…………………………………………………3 2.1 AB堆疊雙層石墨的幾何結構與漢米爾頓矩陣元素…………3 2.2 在外加均勻電場下AB堆疊雙層石墨的漢米爾頓矩陣元素…4 2.3 在外加均勻磁場下AB堆疊雙層石墨的漢米爾頓矩陣元素…5 2.4 在外加均勻磁場與均勻電場下AB堆疊雙層石墨的漢米爾頓矩陣元素……………………………………………………………………8 第三章 無外場與外加場下的電子性質……………………………11 3.1 無外場與外加電場下的能帶特性………………………………11 3.2外加均勻磁場下的能帶與波函數特性…………………………15 3.3 外加均勻磁場與均勻電場下雙層石墨的能帶與波函數特性…22 3.3.2 外加均勻電場與均勻磁場下的波函數變化………………36 3.3.3 能隙隨著電場與磁場的改變………………………………47 第四章 結論…………………………………………………………53 參考文獻……………………………………………………………55

    [1] Ohta, T., Bostwick, A., Seller, T., Horn, K. & Rotenberg, E. 2006, Science 313, 951. (doi:10.1126/science.1130681)
    [2] Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass,J., Marchenkov, A. N., Conrad, E. H., First, P. N. & De Heer, W. A. 2007 ,Science 312, 1191.
    (doi:10.1126/science.1125925)
    [3] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva,I. V. & Firsov, A. A. 2004 ,Science 306,666. (doi:10.1126/science.1102896)
    [4] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I.V., Dubonos, S. V. & Firsov, A. A. 2005 ,Nature 438, 197. (doi:10.1038/nature04233)
    [5] Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. 2005 ,Nature 438, 201. (doi:10.1038/nature04235)
    [6] Novoselov, K. S., McCann, E., Morozov, S. V., Fal’ko, V. I., Katsnelson, M. I., Zeitler, U.,Jiang, D., Schedin, F. & Geim, A. K. 2006 , Nat. Phys. 2, 177. (doi:10.1038/nphys245)
    [7] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. 2009 , Rev. Mod. Phys. 81, 109. (doi:10.1103/RevModPhys.81.109)
    [8] Latil, S. & Henrard, L. 2006, Phys. Rev. Lett. 97,036803. (doi:10.1103/PhysRevLett.97.036803)
    [9] Partoens, B. & Peeters, F. M. 2006 , Phys. Rev. B 74, 075404. (doi:10.1103/PhysRevB.74.075404)
    [10] Gruneis, A., Attaccalite, C., Wirtz, L., Shiozawa, H., Saito, R., Pichler, T., Rubio, A. 2008 , Rev. B 78, 205425. (doi:10.1103/PhysRevB.78.205425)
    [11] Ohta, T., Bostwick, A., McChesney, J. L., Seyller, T., Horn, K. & Rotenberg, E. 2007 , Phys. Rev. Lett. 98, 206802. (doi:10.1103/PhysRevLett.98.206802)
    [12] Abergel, D. S. L. & Fal’ko, V. I. 2007 ,Phys. Rev. B 75, 155430. (doi:10.1103/PhysRevB.75.155430)
    [13] Lu, C. L., Chang, C. P., Huang, Y. C., Chen, R. B. & Lin, M. F. 2006 , Phys. Rev. B 73, 144427.
    (doi:10.1103/PhysRevB.73.144427)
    [14] Ho, J. H., Lai, Y. H., Chiu, Y. H. & Lin, M. F. 2008 ,Nanotechnology 19, 035712. (doi:10.1088/0957-4484/19/03/035712)
    [15] Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M. C., Zettl, A., Crommie, M. F., Shen,Y. R. & Wang, F. 2009 ,
    Nature 459, 820. (doi:10.1038/nature08105)
    [16] Li, G. & Andrei, E. Y. 2007 , Nat.Phys. 3, 623. (doi:10.1038/nphys653)
    [17] Matsui, T., Kambara, H., Niimi, Y., Tagami, K., Tsukada, M. & Fukuyama, H. 2005 STS , Phys. Rev. Lett. 94, 226403.
    (doi:10.1103/PhysRevLett.94.226403)
    [18] Nakao, K. 1976 , J. Phys. Soc.Japan 40, 761. (doi:10.1143/JPSJ.40.761)
    [19] Orlita, M., Faugeras, C., Martinez, G., Maude, D. K., Sadowski, M. L. & Potemski, M. 2008 ,Phys. Rev. Lett. 100,136403. (doi:10.1103/PhysRevLett.100.136403)
    [20] Deacon, R. S., Chuang, K.-C., Nicholas, R. J., Novoselov, K. S. & Geim, A. K. 2007 , Phys. Rev. B 76, 081406. (doi:10.1103/PhysRevB.76.081406)
    [21] Jiang, Z., Henriksen, E. A., Tung, L. C., Wang, Y.-J., Schwartz, M. E., Han, M. Y., Kim, P. & Stormer, H. L. 2007 , Phys. Rev. Lett. 98, 197403. (doi:10.1103/PhysRevLett.98.197403)
    [22] Sadowski, M. L., Martinez, G., Potemski, M., Berger, C. & de Heer, W. A. 2006 , Phys. Rev. Lett. 97, 266405.
    (doi:10.1103/PhysRevLett.97.266405)
    [23] Lai, Y. H., Ho, J. H., Chang, C. P. & Lin, M. F. 2008 ,Rev. B 77, 085426. (doi:10.1103/PhysRevB.77.085426)
    [24] Henriksen, E. A., Jiang, Z., Tung, L.-C., Schwartz, M. E., Takita, M., Wang, Y.-J., Kim, P. & Stormer, H. L. 2008 , Phys. Rev. Lett. 100, 087403.
    (doi:10.1103/PhysRevLett.100.087403)
    [25] Plochocka, P., Faugeras, C., Orlita, M., Sadowski, M. L., Martinez, G., Potemski, M., Goerbig, M. O., Fuchs, J.-N., Berger, C. & de Heer, W. A. 2008 , Phys. Rev.Lett. 100, 087401. (doi:10.1103/PhysRevLett.100.087401)
    [26] Zheng, Y. & Ando, T. 2002 , Phys. Rev.B 65, 245420. (doi:10.1103/PhysRevB.65.245420)
    [27] Koshino, M. & Ando, T. 2008 , Phys. Rev.B 77, 115313. (doi:10.1103/PhysRevB.77.115313)
    [28] Chang, C. P., Lu, C. L., Shyu, F. L., Chen, R. B., Huang, Y. C. & Lin, M.F. 2005, Carbon 43, 1424.
    (doi:10.1016/j.carbon.2005.01.012)
    [29] Ho, J. H., Lai, Y. H., Chiu, Y. H. & Lin, M. F. 2008 , Physica E 40,1722. (doi:10.1016/j.physe.2007.10.065)
    [30] Chang, C. P., Lu, C. L., Shyu, F. L., Chen, R. B., Fang, Y. K. & Lin, M. F. 2004 , Carbon 42, 2975. (doi:10.1016/j.carbon.2004.07.011)
    [31] Johnson, L. G. & Dresselhaus, G. 1973, Phys. Rev. B 7, 2275.(doi:10.1103/PhysRevB.7.2275)
    [32] Lin, M. F. & Shung, K. W.-K. 1994 ,Rev. B 50, 17744. (doi:10.1103/PhysRevB.50.17744)
    [33] Luttinger, J. M. 1951 , Phys.Rev. 84, 814. (doi:10.1103/PhysRev.84.814)
    [34] Mahan, G. D. 1990 , (Plenum, New York).

    下載圖示 校內:2011-08-17公開
    校外:2011-08-17公開
    QR CODE