簡易檢索 / 詳目顯示

研究生: 陳致誠
Chen, Chin-Cheng
論文名稱: 磷酸鈣/硫酸鈣複合骨水泥性質研究
Investigation of properties of calcium phosphate/calcium sulfate composite cement
指導教授: 朱建平
Ju, Chien-Ping
陳瑾惠
Chern Lin, Jiin-Huey
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 133
中文關鍵詞: 骨水泥磷酸鈣硫酸鈣複合材料
外文關鍵詞: calcium sulfate, composite material, bone cement, calcium phosphate
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磷灰石骨水泥具有優良的生物相容性與適當的機械強度雖不具有骨增生作用,卻具骨傳導支持作用,但其在人體內吸收速率相當慢使得骨細胞不易取代;硫酸鈣不會引起明顯的炎性反應,且在體內溶解速率快,溶解的同時釋出鈣離子,鈣離子的釋出使得材料具有誘骨性;因此磷酸鈣和硫酸鈣混合後,利用硫酸鈣快速被吸收當作製造骨基質原料及產生空洞效果的特性,有利於新骨長入。
    本實驗第一部分的固相為三種不同的磷酸鈣相以不同比例與硫酸鈣相做結合,液相分別為a M of N solution、b M of N solution與c M of N solution,針對不同比例與不同濃度的硬化劑來做抗壓強度上的比較。
    本實驗第二部份針對適當比例的磷酸鈣與硫酸鈣複合材做硬化劑上之調整來取得抗壓強度上之提升;並對其做分析及探討。第三部份探討硬化劑對適當比例的複合材機械性質之影響以及分析。第四部份對複合材做短時間以及長時間浸泡Hanks’ solution之反應機制、機械性質與其他物理性質之探討。
    複合材添加b M of N solution + kM Ta acid在浸泡Hanks’ solution一天具有較佳抗壓強度(約37MPa)而長時間浸泡下,由於被抑制的 S 隨著浸泡時間增長,水合反應的發生,S 轉變為S2,導致抗壓強度上複合材骨水泥並沒有高的衰退率,在體外測試的低衰退率以及硫酸鈣相在人體中具有刺激骨生長的特性,將使得此複合材在未來具有相當大的發展性。

    Without osteoinductive property, calcium phosphate has osteoconductive and sustaining characterization .It has also shown excellent biocompatibility and adequate mechanical properties but has slow resorption in the human body. Calcium sulfate is a kind of materials that will not cause inflammation and has fast resorption in human body.
    The absorpted calcium sulfate will be used as materials of bone matrix. It will make porous effect in composite. The newly formed bone integrates into the implant along with the pore and contacts directly with crystals of calcium phosphate.
    The first part of experiment is comparison of the compressive strength in view of the different solid phase and the different liquid phase. The solid phase is different type of calcium phosphate and calcium sulfate with different proportion. The liquid phase respectively is a M of N solution、b M of N solution and C M of N solution.
    The second part of experiment is promotion of compressive strength on adequate ratio of calcium phosphate composite by different liquid phase. The third part of experiment is to discuss influence on hardening agents extra add organic acid. And fourth part of experiment is to study calcium phosphate composite soaking Hanks’ solution with short time and long time of mechanism, mechanical property and physical property.
    composite with b M N + kM Ta acid soaking Hanks’ solution one day have greater compressive strength(about 37MPa).In Soaking long time, inhibtive calcium sulfate hemihydrate become calcium sulfate dihydrate with soaking time increase. Accompanying hydration, it makes low degration. Low degration in vitro and osteoinductive property of calcium sulfate enable calcium phosphate composite respectable potential in the future.

    目錄 中文摘要 I Abstract III 致謝 IV 第一章 總序論 1 1-1 生醫植入材料分類及發展簡介 1 1-1-1 生醫材料的定義: 1 1-1-2生醫材料的分類: 2 1-1-3 生醫材料的發展簡史: 7 1-2 生醫陶瓷 11 1-3 人體硬組織成份與性質簡介: 14 1-4生醫骨科人工植入材料所需具備的條件 19 1-4-1骨取代物在生物學上的要求: 19 1-4-2骨取代材料性質與製程的要求 20 第二章文獻回顧 22 2-1 生醫陶瓷之骨取代材 22 2-1-1 骨細胞與生醫陶瓷間之反應 23 2-1-2 生物活性與結構型態間之相關性 24 2-1-3可吸收性生醫陶瓷 24 2-2硫酸鈣的歷史回顧與性質簡介 28 2-2-1 硫酸鈣的歷史回顧與發展 28 2-2-2 硫酸鈣的性質簡介 29 2-3磷酸鈣的性質簡介與發展 33 2-3-1鈣磷系生醫陶瓷的性質與分類 33 2-3-2雙相磷酸鈣骨水泥 35 2-3-3 磷酸鈣骨水泥的優點與缺點 36 2-4 羧基(carboxylic groups)對磷酸鈣與硫酸鈣的影響: 41 2-4-1有機酸對磷酸鈣鹽類的影響: 41 2-4-2 羧基(carboxylic groups)對硫酸鈣水合反應的影響 43 2-5研究目的 47 第三章 實驗原理及步驟 48 3-1 實驗使用藥品 48 3-2 實驗步驟與分析方法 48 3-2-1 抗壓試片製作與強度測試 48 3-2-2 工作與硬化時間測量 49 3-2-3 PH值的量測 49 3-2-4 X-Ray diffraction (XRD)分析 50 3-2-5 Scanning Electron Microscopy(SEM)表面觀察 51 3-2-6 元素分佈分析(mapping) 52 3-2-7 細胞毒性測試 52 第四章 結果與討論: 59 4-1 不同種類的磷酸鈣與硫酸鈣以不同比例混合添加不同濃度N間之浸泡Hanks’ solution一天後機械性質測量: 59 4-1-1 T和S 以不同比例混合之複合材: 59 4-1-2以做過前處理PT和S以不同比例混合的複合材: 60 4-1-3以雙相P(c-cpc)和S以不同比例混合的複合材: 61 4-2 以磷酸根系列的硬化劑對複合材骨水泥性質影響之結果與討論: 67 4-2-1 工作及硬化時間與PH值之測量結果: 67 4-2-2 抗壓強度分析: 68 4-2-3針對複合材骨水泥與N 硬化劑間粉液比改變之影響: 69 4-2-4 XRD分析: 69 4-2-5 SEM微觀結構觀察: 70 4-3 有機酸的添加對複合材骨水泥性質影響之結果與討論: 77 4-3-1 工作及硬化時間與PH值之測量結果: 77 4-3-2 抗壓強度分析 78 4-3-3針對複合材骨水泥與N添加kM Ta硬化劑間粉液比改變之影響: 79 4-3-4 SEM微觀結構觀察: 80 4-3-4 XRD分析 81 4-4 複合材初始反應情形: 93 4-4-1初期slurry的PH值變化: 93 4-4-2複合材骨水泥浸泡Hanks’ solution 短時間抗壓強度分析 94 4-4-3複合材骨水泥浸泡Hanks’ solution 短時間SEM分析: 95 4-4-4複合材骨水泥浸泡Hanks’ solution 短時間XRD分析: 96 4-5複合材骨水泥長時間浸泡Hanks’ solution之結果討論與分析: 105 4-5-1 抗壓強度分析: 105 4-5-2 XRD分析: 106 4-5-3 SEM 微觀結構分析: 107 4-5-4 浸泡Hanks’ solution不同時間之PH值變化比較: 108 4-6 細胞毒性測試 123 結論 125 參考資料 128   表目錄 表1-1-2-1生醫材料的分類與應用 8 表1-1-3-1有關生醫植入材料的重要發展簡列(Part I)。 9 表1-1-3-2 有關生醫植入材料的重要發展簡列(Part II)。 10 表1-2-1. 目前在應用上常見的生醫陶瓷 13 表2-3-1 不同鈣磷比的鈣磷系骨水泥化合物以及其溶解常數(logKsp)。 38 表2-3-2以磷灰石相為主要產物的商用鈣磷系骨水泥 39 表3-1-1 實驗所用藥品名稱及來源。 53 表3-2-2. Hanks' solution 化學成分表。(Hench, 1971) 54 表4-2-1 工作及硬化時間與PH值關係圖表。 72 表4-2-2 硬化劑的L/P ratio對工作時間及硬化時間的影響分析圖表。 72 表4-3-1 bM N添加不同濃度的有機酸影響複合材骨水泥硬化時間與PH值關係圖表。 82 表4-3-2 針對N添加kM Ta acid硬化劑的L/P ratio對工作時間及硬化時間的影響分析圖表。 82 圖目錄 圖1-3-1 人體骨骼系統 17 圖1-3-2人體骨骼構造,緻密骨皮質骨以及骨基質示意圖。 18 圖2-1-1 可吸收性生物骨取代物複合材料的種類。 26 圖2-2-1 半水硫酸鈣的繞射峰圗。 31 圖 2-2-3 各相硫酸鈣在不同溫度下之水中溶解度 32 圖2-3-1 磷酸鈣鹽類在25°C的等溫溶解度曲線圖 40 圖2-4-1 HA成核示意圖。 44 圖2-4-2 有機酸對HA表面吸附與去鈣作用示意圖 44 圖2-4-3 起始硬化時間與注射性對檸檬酸添加量的關係圖 45 圖2-4-4 抗壓強度對時間關係圖L/P=0.32ml/g 45 圖2-4-5在純水中(a)及在1000ppm的D,L-malic acid(b)生成之二水硫酸鈣的微結構;有機酸的添加已使兩者之微結構形狀有所不同。 46 圖 3-2-4 pH meter SP-2200。 57 圖4-1-4當setting solution 為bM N時,其浸泡Hanks’soiution一天後不同比例PT與S之機械強度關係圖。 64 圖4-1-6當setting solution 為bM N時,其浸泡Hanks’soiution一天後不同比例之雙相磷酸鈣(c-cpc)與S之機械強度關係圖。 65 圖4-1-7當setting solution 為bM H時,其浸泡Hanks’soiution一天後不同比例之雙相磷酸鈣(c-cpc)與S之XRD圖。 66 圖4-1-8當setting solution 為bM N時,其浸泡Hanks’soiution一天後不同比例之雙相磷酸鈣(c-cpc)與S之XRD圖。 66 圖4-2-1 複合材骨水泥添加硬化劑K的抗壓強度關係圖。 73 圖4-2-2 複合材骨水泥添加硬化劑N的抗壓強度關係圖。 73 圖4-2-3 複合材骨水泥添加硬化劑Na2的抗壓強度關係圖。 74 圖4-2-6 N不同濃度的XRD圖。 75 圖4-2-7 Na2不同濃度的XRD圖。 76 圖4-3-1 複合材與bM N添加不同濃度的M acid其濃度對抗壓強度關係圖。 83 圖4-3-2 複合材與bM N添加不同濃度的C acid其濃度對抗壓強度關係圖。 83 圖4-3-3 複合材與bM N添加不同濃度的Ta acid其濃度對抗壓強度關係圖。 84 圖4-3-4 N添加kM Ta硬化劑的L/P ratio對複合材骨水泥抗壓強度關係圖。 84 圖4-3-8 複合材骨水泥與bM N + M acid不同濃度混合浸泡Hanks’ solution 一天XRD分析圖。 91 圖4-3-9 複合材骨水泥與bM N + C acid不同濃度混合浸泡Hanks’ solution 一天XRD分析圖。 91 圖4-3-10複合材骨水泥與bM N + Ta acid不同濃度混合浸泡Hanks’ solution 一天XRD分析圖。 92 圖4-4-1 複合材骨水泥硬化劑為bM N L/P=0.33在反應前20 min中骨水泥PH值之變化。 98 圖4-4-2 複合材骨水泥硬化劑為bM N + kM Ta acid L/P=0.35在反應前20 min中骨水泥PH值之變化。 98 圖4-4-3 硬化劑為bM N對複合材骨水泥做短時間抗壓強度上分析。 99 圖4-4-4 硬化劑bM N +kM Ta acid對複合材骨水泥短時間抗壓強度上分析。 99 圖4-4-7 複合材骨水泥與N短時間XRD分析圖。 104 圖4-4-8 複合材骨水泥與N添加kM Ta acid短時間XRD分析圖。 104 圖4-5-1複合材骨水泥加上硬化劑為bM N與T / D(c-cpc cement)浸泡Hanks’ solution 長時間抗壓強度上之比較。 110 圖4-5-2複合材骨水泥加上硬化劑為bM N+ kM Ta acid與T / D (c-cpc cement)浸泡Hanks’ solution 長時間抗壓強度上之比較。 110 圖4-5-3(a)、(b) 複合材骨水泥加上硬化劑為bM N浸泡Hanks’ solution 長時間之XRD分析。 111 圖4-5-4(a)、(b) 複合材骨水泥加上硬化劑為bM N + kM Ta acid浸泡Hanks’ solution 長時間之XRD分析。 112 圖4-5-7 複合材骨水泥與bM N混合浸泡Hanks’ solution一天元素分析圖(mapping)。 121 圖4-5-8 複合材骨水泥與bM N + kM Ta acid混合浸泡Hanks’ solution一天元素分析圖(mapping)。 121 圖4-5-9 複合材骨水泥與硬化劑bM N浸泡Hanks’ solution 長時間之PH值分析圖。 122 圖4-5-10 複合材骨水泥與硬化劑bM N + kM Ta acid浸泡Hanks’ solution 長時間之PH值分析圖。 122 圖4-6-1複合材骨水泥與硬化劑bM N和硬化劑為bM N + kM Ta acid細胞毒性測試結果。 124

    A Karin. Hing, Bioceramic Bone Graft Substitutes: Influence of Porosity and Chemistry. Int. J. Appl. Ceram. Technol., 2 184–199, 2005
    A L.Breed. Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement. Traumatic hypertension of bone. Clin Orthop 102: 227-44, 1974.
    A. H. Reddi, S. Wientroub, and N. Muthukumaran, ‘‘Biologic Principles of Bone Induction,’’ Orthop. Clin. North Am., 18 [2] 207–212 (1987).
    A.P. Pierson, D. Bigelow , M. Hamonic Bone grafting with boplant. Results in thirty-three cases. J Bone & Joint Surg 50(B): 364–368, 1968A.S. Myerson. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
    B. FU, Q. SHEN, W. QIAN, Y. ZENG, X. SUN, M. HANNIG. Interfacial interaction of tartaric acid with hydroxyapatite and enamel. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE 16 (2005) 827– 831.
    C. Gao, J. Gao, X. You, S. Huo, X. Li, Y. Zhang, W. Zhang. Fabrication of calcium sulfate/PLLA composite for boneRepair. J Biomed Mater Res 73(A): 244-253, 2005.
    C. P. Klein, A. A. Driessen, K. de Groot, and A. van den Hooff, ‘‘Biodegradation Behavior of Various Calcium Phosphate Materials in Bone Tissue,’’ J. Biomed. Mater. Res., 17 [5] 769–784 (1983).
    C. Wang, Y. Duan, B. Markovic, J. Barbara, C. R. Howlett, X. Zhang, and H. Zreiqat, ‘‘Phenotypic Expression of Bone-Related Genes in Osteoblasts Grown on Calcium Phosphate Ceramics with Different Phase Compositions,’’Biomaterials, 25 [13] 2507–2514 (2004).
    C.Vellmer,NB Singh,B Middendorf(2004).Chemisorption of carboxylic acids and the setting of hemihydrate pastes .Cement and Concrete Research.
    Chen WC, Ju CP, Chern Lin JH. Variation in structure and properties of a non-dispersive TTCP/DCPA-derived calcium phosphate cement immersed in Hanks' solution. J Oral Rahab accepted.
    D. W. Burt and A. S. Law, ‘‘Evolution of the Transforming Growth Factor-Beta Superfamily,’’ Prog. Growth Factor Res., 5 [1] 99–118 (1994).
    D.A. Nussbaum, Gailloud P, Murphy K (2004) The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy. J Vasc Interv Radiol 15:121–126
    de Groot K. Medical applications of calcium phosphate bioceramics. The centennial memorial issue of the ceramic society of Japan 1991;99:943-953.
    DN Misra . Interaction of citric acid with hydroxyapatite: surface exchange of ions and precipitation of calcium citrate. J Dent Res 1996;75:1418–1425.
    E.C. Combe, D.C. Smith, J. Appl. Chem. 15: 367, 1965.
    E.C. Combe, D.C. Smith, J. Appl. Chem. 16: 73, 1966.
    from electrolyte solutions. V. The influence of citrate ions. Calcif Tissue Int 1979;28:131–136.
    grouts for orthopedic use,” Ann. N.Y. Acad. Sci., 523, 190-207 (1988).
    H.Monma,M.Goto and T.Kohmura ,Gypsum &Lime,No.188,11-16(1984)
    Hydroxyapatite,’’ J. Mater. Sci. Mater. Med., 10 [3] 135–145 (1999).
    J Alberto. Ambard, DDS, MS;1 and Leonard Mueninghoff, DDS Calcium Phosphate Cement: Review of Mechanical and Biological Properties,J Prosthodont 2006;15:321-328. Copyright C_ 2006 by The American College of Prosthodontists.
    J. A. Skinner, P. O. Kroon, S. Todo, and G. Scott, ‘‘A Femoral Component with Proximal HA Coating. An Analysis of Survival and Fixation at up to Ten Years,’’ J. Bone Joint Surg. Br., 85 [3] 366–370 (2003).
    J. H. Kuhne, R. Bartl, B. Frisch, C. Hammer, V. Jansson, and M. Zimmer, ‘‘Bone Formation in Coralline Hydroxyapatite. Effects of Pore Size Studied in Rabbits,’’ Acta Orthop. Scand., 65 [3] 246–252 (1994).
    J.B. Park. Biomaterials, An Introduction. Plenum Press. New York, 1979.
    J.R. Parsons, J. L. Ricci, and H. Alexander, ”Osteoconductive composite
    JB Park , JD Bronzino. Biomaterials principles and applications. CRC Press, New York, 2003.
    JB Park. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
    JB Park. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
    K Soballe.Hydroxyapatite ceramic coating for bone implant fixation.ACTA Orthopaed Scandin Supplem 1993;64:1-58.
    K. A. Hing, S. M. Best, and W. Bonfield, ‘‘Characterization of Porous
    K. Anselme, ‘‘Osteoblast Adhesion on Biomaterials,’’ Biomaterials, 21 668–680 (2000).
    K. N. Lewis • M. V. Thomas • D. A. Puleo; Mechanical and degradation behavior of polymer-calcium sulfate composites. J Mater Sci: Mater Med (2006) 17: 531–537
    K. Soballe, H. Brockstedt-Rasmussen, E. S. Hansen, and C. Bunger, ‘‘Hydroxyapatite Coating Modifies Implant Membrane Formation. Controlled Micromotion Studied in Dogs,’’ Acta Orthop. Scand., 63 [2]128–140 (1992).
    KH Rateitschak, HF Wolf . Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995.
    L Brecevic, H Furedi-Milhofer . Precipitation of calcium phosphates
    L Leroux, Z Hatim, M Fre`che , JL Lacout . Effects of various adjutants (lactic acid, glycerol, and chitosan) on the injectability of calcium phosphate cement. Bone 1999;25:31S–34S.
    L Peltier : The use of plaster of Paris to fill large defects in bone. Am J Surg 97:311-315, 1959
    L. Amathieu, R. Boistelle, Crystal Growth 79: 169, 1986.
    L. Smith, ‘‘Ceramic–Plastic Material as a Bone Substitute,’’ Arch Surg., 87 653–661 (1963).
    L.Amathieu and R.Boistelle "Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, Journal of Crystal Growth 88: 184,1988.
    L.C. CHOW ; CALCIUM PHOSPHATE MATERIALS:REACTOR RESPONSE ; Adv Dent Res 2(1):181-184, August, 1988
    LC Chow. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 1991;99(10):954-964.
    LL Hench, Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-1510.
    M Jarcho: Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 1981;157:259-278
    M Sidqui , P Collin , C Vitte : Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulphate hemihydrate. Biomaterials 16:1327-1332; 1995
    M. Bohner and F. Baumgart, ‘‘Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes,’’ Biomaterials, 25 [17] 3569–3582 (2004).
    M. Bohner, U. Gbureck, J.E. BarraletTechnological issues for the development of more efficient calcium phosphate bone cements: A critical assessmentBiomaterials 26 (2005) 6423–6429
    M.Bohner.Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 2000;31:S-D37-47.
    M.E. Tadros, I. Mayes, J. Colloid. Interface Sci. 72: 245, 1979
    M.P.C Weijnen, G.M. van Rosmalen, Desalination 54: 239, 1985.
    M.P.C. Weijnen and G.M. van Rosmalen: The Role of Additives and Impurities in the Crystallization of Gypsum, Industrial Crystallization 84, edited by S.J. Jancic and E.J. de Jong, Elsevier Science Publishers B.V. Amsterdam, 61-66 1984.
    P. Chen, J. L. Carrington, R. G. Hammonds, and A. H. Reddi, ‘‘Stimulation of Chondrogenesis in Limb Bud Mesoderm Cells by Recombinant Human Bone Morphogenetic Protein 2B (BMP-2B) and Modulation by Transforming Growth Factor Beta 1 and Beta 2,’’ Exp. Cell Res., 195 [2] 509–515 (1991).
    P. K. Stephenson, M. A. Freeman, P. A. Revell, J. Germain, M. Tuke, and C. J. Pirie, ‘‘The Effect of Hydroxyapatite Coating on Ingrowth of BoneInto Cavities in an Implant,’’ J. Arthroplasty, 6 [1] 51–58 (1991).
    P. S. Eggli, W. Muller, and R. K. Schenk, ‘‘Porous Hydroxyapatite and Tricalcium Phosphate Cylinders with Two Different Pore Size Ranges Implanted in the Cancellous Bone of Rabbits. A Comparative Histomorphometric and Histologic Study of Bony Ingrowth and Implant Substitution,’’Clin. Orthop., [232] 127–138 (1988).
    PD Costantino , CD Friedman: Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994;27:1037-1074
    R. E. Holmes, ‘‘Bone Regeneration Within a Coralline Hydroxyapatite Implant,’’ Plast. Reconstr. Surg., 63 [5] 626–633 (1979).
    S. F. Hulbert, F. A. Young, R. S. Mathews, J. J. Klawitter, C. D. Talbert, and F. H. Stelling, ‘‘Potential of Ceramic Materials as Permanently Implantable Skeletal Prostheses,’’ J. Biomed. Mater. Res., 4 [3] 433–456 (1970).
    S. F. Hulbert, S. J. Morrison, and J. J. Klawitter, ‘‘Tissue Reaction to Three Ceramics of Porous and Non-Porous Structures,’’ J. Biomed. Mater. Res., 6[5] 347–374 (1972).
    S. Sarda, E. Fernández, M. Nilsson, M. Balcells, J. A. Planell. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. J Biomed Mater Res 61: 653–659, 2002.
    S.F. Hulbert, J.C. Bokros, L.L. Hench, Wilson J, G. Heimke. T. Kokubo, Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
    SF Hulbert , LL Hench , D Forbers , LS Bowman . History of bioceramics. Ceram Internat. 1982;8:131-140.
    S-Hoon Rhee, Junzo Tanaka. Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid. Biomaterials 20 (1999) 2155-2160.
    W.R. Moore, S.E. Graves, G.I. Bain. Synthetic Bone Graft Substitutes. ANZ J. Surg 71: 354-361,2001.
    Y. FUKASE, E.D. EANES', S. TAKAGI3, L.C. CHOW, and W.E. BROWN;Setting Reactions and Compressive Strengths of Calcium Phosphate Cements;J Dent Res 69(12):1852-1856, December, 1990
    Y. Yoshidal, B. Van Meerbeek,Y. Nakayama, M. Yoshioka,J. Snauwaert, Y. Abe, P. Lambrechts,G. Vanherle, and M. Okazaki.Adhesion to and Decalcification of Hydroxyapatite by Carboxylic Acids. J Dent Res 80(6):1565-1569, 2001.
    Y.Yoshida,B.VanMeerbeek,Y.Nakayama,J.Snauwaert,L.Hellemans, P.Lambrechts,G.Vanherle,and K.Wakasa.Evidence of Chemical Bonding at Biomaterial-Hard Tissue Interfaces. J Dent Res 79(2): 709-71 4, 2000.
    周森,複合材料; 全威圖書出版
    張炳龍,ROSS組織學,合記圖書出版社,1991;147-158
    http://training.seer.cancer.gov/module_anatomy/unit3_2_bone_tissue.htm
    http://www.itri.org.tw/chi/services/ieknews/h2001-B01-40040-B447-0
    http://www.jiaoxing.net/books/node/281
    http://zh.wikipedia.org~

    無法下載圖示 校內:2107-07-31公開
    校外:2107-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE