簡易檢索 / 詳目顯示

研究生: 莫舒婷
Mo, Shu-Ting
論文名稱: 探討磷酸酶PP2A在細胞內的分佈調節
Study the subcellular localization of the PP2A holoenzymes
指導教授: 蔣輯武
Chiang, Chi-Wu
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 90
中文關鍵詞: 蛋白質磷酸酶2A型(PP2A)雙分子螢光互補作用調節性次單元B細胞中分布位置
外文關鍵詞: PP2A, BiFC, regulatory subunit B, subcellular localization
相關次數: 點閱:165下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質磷酸酶2A型 (以下簡稱PP2A)是由三種次單元所組成,包含了具有PP2A酵素活性的催化次單元C、做為骨架功能的結構次單元A、以及最為多樣化的調節性次單元B。不同的B次單元被認為具有決定PP2A完全酶的受質特異性、生長發育的調節以及在細胞中坐落的位置。至今最少已發現四種調節性次單元家族,分別為B、B’、B’’以及B’’’。
    首先,我們藉由間接免疫染色法的方式,發現在NIH3T3細胞中短暫表現A次單元的分布情形是以cytoplasm為主,少部分細胞呈現均勻分布的現象。而在短暫表現C次單元時可以觀察到,C次單元在細胞各處皆有表現,但主要仍是以 cytoplasm的分布為最多。接著,我們也對於最為多變化的B次單元在細胞中的分布情形進行研究,包含B55α、B55β1、B55β2、B55δ與B56γ3。結果顯示,單獨表現B55α或B55δ的分布情形主要皆坐落在cytoplasm的位置,而B55β1與B56γ3則是以核質均勻的分布方式為主要代表,B55β2則有分布類似於mitochondria的情形。此外,在B55β1 N-terminal部分序列換成B55α N-terminal的部分特異序列的B55βαβ混合體,其分布位置則傾向於類似B55α的分布。
    接下來,我們藉由雙分子螢光互補法(BiFC)的方式來探討PP2A完全酶在細胞中的分布位置。首先,我們藉由BiFC方法所產生的螢光表現,可以直接觀察到A與C 次單元結合時的分布位置,主要是以核質均勻或是質多於核的方式呈現。我們也利用BiFC方法來探討,Aα 次單元與各種不同的B次單元結合後在細胞中的分布情形。將以上直接觀察A與B次單元交互作用後所得到的BiFC的螢光結果,與利用間接免疫螢光染色法得到的單獨表現B次單元的分布情形進行比較後,分布位置具有一致的結果。進一步,我們利用能夠與B次單元競爭Aα 次單元結合的腫瘤病毒SV40的small T抗原(ST),證實了Aα與B次單元經交互作用後所產生的BiFC現象是具有特異性的。此外,我們也藉由BiFC這個方法證實在細胞週期S-phase時,A與B56γ3結合後,會有在細胞核高度表現的情形,然而B55則不會。
    總結來說,我們成功建立BiFC方法致力於研究PP2A A、B、C次單元在細胞中交互作用的情形,並且我們的結果進一步驗證了,B次單元對於PP2A在細胞中分佈的位置具有決定性角色的理論。

    Protein phosphatase 2A (PP2A) is a heterotrimeric enzyme consisting of a catalytic subunit (C), a scaffolding subunit (A), and a variable regulatory subunit (B). The regulatory subunit B is believed to determine the substrate specificity, developmental regulation, and subcellular localization of the PP2A holoenzymes, and there are at least four different families of the regulatory subunit, termed B, B’, B’’ and B’’’ families.
    By indirect immunofluorescence microscopy, we found that in NIH3T3 cells transiently expressed A subunits displayed a mainly cytoplasmic distribution pattern, with a few cells displaying ubiquitous distribution. Distribution of transiently expressed C subunits was mainly ubiquitous throughout the cell, with some cells exhibiting a primarily cytoplasmic pattern. Analyses of subcellular localization of transiently expressed B subunits, including B55, B55β1, B55β2, B55δ, and B56γ3, demonstrated that B55 and B55δ were primarily cytoplasmic, and that B55β1 and B56γ3 showed mainly ubiquitous distribution. In addition, B55β2 seemed to localize to the mitochondria. More, B55ββ, which is a B55β1 with part of its N-terminal sequence substituted with the most unique N-terminal sequence of B55, showed a distribution pattern similar to that of B55 rather than B55β1.
    Further, we employed bimolecular fluorescence complementation (BiFC) analysis to investigate the subcellular localization of the PP2A holoenzymes. Firstly, we found that association of the A and C subunits exhibited either a ubiquitous pattern of fluorescence or a cytoplasmic pattern of fluorescence due to BiFC. Secondly, we showed that association of the A subunit with various B subunits exhibited distinct subcellular distribution of fluorescence due to BiFC, consistent with results of indirect immunofluorescence analysis for individual B subunits. Thirdly, we demonstrated the specificity of fluorescence caused by BiFC resulting from specific interactions between the A and B subunits by employing small T antigen (ST) of tumor virus SV40 which competes with B subunit for binding with the A subunits. Furthermore, we demonstrated that association of A and B56γ3, but not B55, was highly enriched in the nucleus during S phase using BiFC analysis.
    In summary, we successfully established BiFC analyses to investigate interactions between the PP2A A, B and C subunits in cells, and our results confirmed that the regulatory B subunits indeed play a dominant role in determining the subcellular localization of the PP2A.

    縮寫對照表 I 中文摘要 II 英文摘要 IV 目錄 VI 圖目錄 IX 緒論 1 一、 蛋白質磷酸酶2A型 (protein phosphatase 2A / PP2A) 1 二、 PP2A的結構性次單元 1 三、 PP2A的催化性次單元 2 四、 PP2A的調節性次單元 3 五、 B次單元在細胞中分布的情形 7 六、 雙分子螢光互補作用(BiFC)及螢光共振能量轉移(FRET) 8 材料與方法 10 一、 抗體 10 二、 藥品及溶液配製 10 三、 Lipofectamine 2000 轉染法 12 四、 將細胞synchronize 在S phase 12 五、 免疫染色法 13 六、 萃取細胞蛋白並以西方墨點法分析 14 七、 免疫沉澱法 14 八、 DNA表現載體的構築 15 實驗結果 21 一、 PP2A A, B, C 次單元各別表現在NIH3T3細胞中的分布位置 21 二、建構PP2A A, B, C次單元運用在雙分子螢光互補作用BiFC的各種表現載體 23 三、利用雙分子螢光互補作用(BiFC)方法來探討PP2A A, B, C 三種次單元之間的交互作用以及在細胞中的分布位置 23 四、 利用SV40 small T來確定PP2A/A與B次單元結合所造成的BiFC是特異的現象 25 五、 利用BiFC檢驗B56γ3與A次單元結合在S-phase時期會明顯集中在細胞核,然而B55α並無此現象產生 26 六、 利用免疫沉澱法進一步證明PP2A/A次單元與B次單元在BiFC研究中的交互作用是特異的而非偶然的現象 26 結論 28 討論 29 一、 PP2A次單元間交互作用的研究方法--雙分子螢光互補法(BiFC)的優缺點探討 29 二、以BiFC方法來分析某些PP2A次單元之間的交互作用卻無法表現螢光以及螢光表現強弱的可能原因 30 三、 B次單元與A次單元結合所產生的BiFC螢光分布位置與單獨表現B次單元的結果相似 31 四、 以BiFC分析PP2A AC核心酶(core enzyme)的分布位置的探討 31 五、 BiFC現象驗證SV40 small T抗原與B次單元競爭結合至A次單元 33 六、 N-terminal序列可能對於B55次單元在細胞中分布情形具有決定性的影響 33 參考文獻 35 圖 50 附錄 73 附錄一. PP2A 完全酶(holoenzyme)結構 74 附錄二. PP2A B55次單元結構以及預測與AC核心酶(core enzyme)結合情形 75 附錄三. B55家族序列比對結果 76 附錄四. 人類PP2A次單元在細胞中的分布位置 77 附錄五. 雙分子螢光互補作用(BiFC) 78 附錄六. 附錄六. Clone PP2A/B 次單元到pcDNA3.1/Zeo(+) vector 79 附錄七. Clone PP2A次單元到pcDNAI/Amp-YN vector 80 附錄八. Clone PP2A次單元到pcDNAI/Amp-YC vector 82 附錄九. Clone PP2A次單元到pFLAG-CMV2-YN vector 84 附錄十. Clone PP2A次單元到pCMV-HA-YC vector 86 附錄十一. BiFC實驗測試組合 88 附錄十二. PP2A作用細胞骨架(cytoskeleton)相關蛋白參與在細胞貼附的調控之中 89 作者自述 90

    1. Hunter T. Protein kinase and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 80(2): 225-236 (1995).
    2. Shenolikar S. Protein serine/threonine phosphatase-New avenues for cell regulation. Annu Rev Cell Biol. 10: 55-86 (1994).
    3. Barford D. Molecular mechanisms of the. protein serine/threonine phophatases. Trends Biochem Sci. 21(11): 407-412 (1996).
    4. Wera S, Hemmings BA. Serine/threonine protein phosphatases. Biochem J. 311(Pt 1): 17-29 (1995).
    5. Millward TA, Zolnierowicz S, Hemmings BA. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 24(5): 186-191 (1999).
    6. Cohen PT. Novel protein serine/threonine phosphatases: variety is the specific life. Trands Biochem Sci. 22(7): 245-251, (1997)
    7. Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 353(Pt 3): 417-439. (2001)
    8. Virshup DM. Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol. 12(2): 180-185. (2000)
    9. Lechward K, Awotunde OS, Swiatek W. Muszyńska G. Protein phosphatase 2A: variety of forms and diversity of functions. Acta Biochim Pol. 48(4): 921-933. (2001)
    10. Mumby MC, Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev. 73(4): 673-699. (1993)
    11. Li X, Scuderi A, Letsou A, Virshup DM. B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Mol. Cell Biol. 22(11): 3674-3684. (2002).
    12. Janssens V, Goris J, van Hoof C. PP2A: the expected tumor suppressor. Curr Opin Genet Dev. 15(1) 34-41. (2005)
    13. Mumby M. PP2A: unveiling a reluctant tumor suppressor. Cell. 130(1): 21-24. (2007)
    14. Kremmer E, Ohst K, Kiefer J, Brewis N, Walter G. Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. Mol. Cell. Biol. 17(3) 1692–1701. (1997)
    15. Hemmings BA, Adams-Pearson C, Maurer F, Müller P, Goris J, Merlevede W, Hofsteenge J, Stone SR. alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry. 29(13): 3166-3173. (1990)
    16. Wang SS, Esplin ED, Li JL, Huang L, Gazdar A, Minna J, Evans GA. Alterations of the PPP2R1B gene in human lung and colon cancer. Science. 282(5387): 284-287. (1998)
    17. Baysal BE, Farr JE, Goss JR, Devlin B, Richard CW 3rd. Genomic organization and precise physical location of protein phosphatase 2A regulatory subunit A beta isoform gene on chromosome band 11q23. Gene. 217(1-2): 107-116. (1998)
    18. Calin GA, de Iasio MG, Caprini E, Vorechovsky I, Natali PG, Sozzi G, Croce CM, Barbanti-Brodano G, Russo G, Negrini M. Low frequency of alterations of α(PPP2R1A) and β(PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene. 19(9): 1191-1195. (2000)
    19. Ruediger R, Pham HT, Walter G. Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the Aα subunit gene. Oncogene. 20: 10–15. (2001)
    20. Colella S, Ohgaki H, Ruediger R, Yang F, Nakamura M, Fujisawa H, Kleihues P, Walter G. Reduced expression of the Aα subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aα and Aβ subunit genes. Int J Cancer. 93(6): 798–804. (2001)
    21. Suzuki K, Takahashi K. Reduced expression of the regulatory A subunit of serine/threonine protein phosphatase 2A in human breast cancer MCF-7 cells. Int J Oncol. 23(5): 1263–1268. (2003)
    22. Walter G, Ferre F, Espiritu O, Carbone-Wiley A. Molecular cloning and sequence of cDNA encoding polyoma medium tumor antigen-associated 61-kDa protein. Proc Natl Acad Sci USA. 86(22): 8669-8672. (1989)
    23. Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell. 96(1): 99-110. (1999)
    24. Wera S, Fernandez A, Lamb NJ, Turowski P, Hemmings-Mieszczak M, Mayer-Jaekel RE, Hemmings BA. Deregulation of translational control of the 65-kDa regulatory subunit (PR65 alpha) of protein phosphatase 2A leads to multinucleated cells. J Biol Chem. 270(36): 21374-21381. (1995)
    25. Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N. PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proc Natl Acad Sci USA. 107(6): 2467–2472. (2010)
    26. Resjö S, Göransson O, Härndahl L, Zolnierowicz S, Manganiello V, Degerman E. Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal. 14(3): 231-238. (2002)
    27. Ruediger R, Hentz M, Fait J, Mumby M, Walter G. Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits. J Virol. 68(1): 123-129. (1994)
    28. Ruediger R, Roeckel D, Fait J, Bergqvist A, Magnusson G, Walter G. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol. 12(11): 4872-4882. (1992)
    29. Fellner T, Lackner DH, Hombauer H, Piribauer P, Mudrak I, Zaragoza K, Juno C, Ogris E. A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo. Genes. Dev. 17(17): 2138–2150. (2003)
    30. Stone SR, Hofsteenge J, Hemmings BA. Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry. 26(23): 7215-7220. (1987)
    31. Khew-Goodall Y, Hemmings BA. Tissue-specific expression of mRNAs encoding alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS Lett. 238(2): 265-268. (1988)
    32. Baharians Z, Schönthal AH. Autoregulation of protein phosphatase type 2A expression. J. Biol. Chem. 273(30): 19019–19024. (1998)
    33. Cormier P, Osborne HB, Bassez T, Poulhe R, Bellé R, Mulner-Lorillon O. Protein phosphatase 2A from Xenopus oocytes. Characterization during meiotic cell division. FEBS Lett. 295(1-3): 185-188. (1991)
    34. Van Hoof C, Ingels F, Cayla X, Stevens I, Merlevede W, Goris J. Molecular cloning and developmental regulation of expression of two isoforms of the catalytic subunit of protein phosphatase 2A from Xenopus laevis. Biochem Biophys Res Commun. 215(2): 666-673. (1995)
    35. Orgad S, Brewis ND, Alphey L, Axton JM, Dudai Y, Cohen PT. The structure of protein phosphatase 2A is as highly conserved as that of protein phosphatase 1. FEBS Lett. 275(1-2): 44-48. (1990)
    36. MacKintosh RW, Haycox G, Hardie DG, Cohen PT. Identification by molecular cloning of two cDNA sequences from the plant Brassica napus which are very similar to mammalian protein phosphatases-1 and -2A. FEBS Lett. 276: 156-160. (1990)
    37. Ariño J, Pérez-Callejón E, Cunillera N, Camps M, Posas F, Ferrer A. Protein phosphatases in higher plants: multiplicity of type 2A phosphatases in Arabidopsis thaliana. Plant Mol Biol. 21(3): 475-485. (1993)
    38. Kinoshita N, Ohkura H, Yanagida M. Distinct, essential roles of type 1 and 2A protein phosphatases in the control of the fission yeast cell division cycle. Cell. 63(2): 405-415. (1990)
    39. Sneddon AA, Cohen PT, Stark MJ. Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes. EMBO J. 9(1): 4339-4346. (1990)
    40. Götz J, Probst A, Ehler E, Hemmings B, Kues W. Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha, Proc Natl Acad Sci U S A. 95(21): 12370–12375. (1998)
    41. Kong M, Ditsworth D, Lindsten T, Thompson CB. Alpha4 is an essential regulator of PP2A phosphatase activity. Mol Cell. 36(1): 51-60. (2009)
    42. Yang J, Roe SM, Prickett TD, Brautigan DL, Barford D. The structure of Tap42/α4 reveals a tetratricopeptide repeat-like fold and provides insights into PP2A regulation. Biochemistry. 46(30): 8807–8815. (2007)
    43. McConnell JL, Gomez RJ, McCorvey LR, Law BK, Wadzinski BE. Identification of a PP2A-interacting protein that functions as a negative regulator of phosphatase activity in the ATM/ATR signaling pathway. Oncogene. 26(41): 6021–6030. (2007)
    44. Xu Y, Chen Y, Zhang P, Jeffrey PD, Shi Y. Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol Cell. 31(6): 873-885. (2008)
    45. Mayer RE, Hendrix P, Cron P, Matthies R, Stone SR, Goris J, Merlevede W, Hofsteenge J, Hemmings BA. Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry. 30(15): 3589-3597. (1991)
    46. Sontag E, Nunbhakdi-Craig V, Bloom GS, Mumby MC. A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J Cell Biol. 128(6): 1131-1144. (1995)
    47. Sontag E, Nunbhakdi-Craig V, Lee G, Bloom GS, Mumby MC. Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron. 17(6): 1201–1207. (1996)
    48. Turowski P, Myles T, Hemmings BA, Fernandez A, Lamb NJ. Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol. Biol. Cell. 10(6): 1997–2015. (1999)
    49. Strack S, Chang D, Zaucha JA, Colbran RJ, Wadzinski BE. Cloning and characterization of B delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Lett. 460(3): 462-466. (1999)
    50. Zolnierowicz S, Csortos C, Bondor J, Verin A, Mumby MC, DePaoli-Roach AA. Diversity in the regulatory Bsubunits of protein phosphatase 2A: identification of a novel isoform highly expressed in brain. Biochemistry. 33: 11858-11867. (1994)
    51. Strack S, Zaucha JA, Ebner FF, Colbran RJ, Wadzinski BE. Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol. 392(4): 515-527. (1998)
    52. Mayer-Jaekiel RE, Hemmings BA. Protein phosphatase type 2A-menage a trois. Trends Cell Biol. 4(4): 287–291. (1994)
    53. Healy AM, Zolnierowicz S, Stapleton AE, Goebl M, DePaoli-Roach AA, Pringle JR. CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Mol Cell Biol. 11(11): 5767-5780. (1991)
    54. Mayer-Jaekel RE, Ohkura H, Gomes R, Sunkel CE, Baumgartner S, Hemmings BA, Glover DM. The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell. 72(4): 621-633. (1993)
    55. McCright B, Virshup DM. Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem. 270(44): 26123-26128. (1995)
    56. Csortos C, Zolnierowicz S, Bako E, Durbin SD, DePaoli-Roach AA. High complexity in the expression of the B' subunit of protein phosphatase 2A. Evidence for the existence of at least seven novel isoforms. J Biol Chem. 271(5): 2578-2588. (1996)
    57. Tehrani MA, Mumby MC, Kamibayashi C. Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. J Biol Chem. 271(9): 5164-5170. (1996)
    58. Tanabe O, Gomez GA, Nishito Y, Usui H, Takeda M. Molecular cloning of a 74-kDa regulatory subunit (B" or delta) of human protein phosphatase 2A. FEBS Lett. 379(1): 107-111. (1996)
    59. McCright B, Rivers AM, Audlin S, Virshup DM. The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem. 271(36): 22081-22089. (1996)
    60. Zolnierowicz S, Van Hoof C, Andjelković N, Cron P, Stevens I, Merlevede W, Goris J, Hemmings BA. The variable subunit associated with protein phosphatase 2A defines a novel multimember family of regulatory subunits. Biochem J. 317(Pt 1): 187-194. (1996)
    61. Gigena MS, Ito A, Nojima H, Rogers TB. B56 regulatory subunit of protein phosphatase 2A localizes to nuclear speckles in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 289(1): H285–H294. (2005)
    62. Flegg CP, Sharma M, Medina-Palazon C, Jamieson C, Galea M, Brocardo MG, Mills K, Henderson BR. Nuclear export and centrosome targeting of the protein phosphatase 2A subunit B56alpha: role of B56alpha in nuclear export of the catalytic subunit. J Biol Chem. 285(24): 18144-18154. (2010)
    63. Lee TY, Lai TY, Lin SC, Wu CW, Ni IF, Yang YS, Hung LY, Law BK, Chiang CW. The B56{gamma}3 regulatory subunit of PP2A regulates S phase-specific nuclear accumulation of PP2A and the G1 to S transition. J Biol Chem. 285(28): 21567-21580. (2010)
    64. Seeling JM, Miller JR, Gil R, Moon RT, White R, Virshup DM. Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science. 283(5410): 2089–2091. (1999)
    65. Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM. Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proc Natl Acad Sci U S A. 99(3): 1182–1187. (2002)
    66. Li X, Yost HJ, Virshup DM, Seeling JM. Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. EMBO J. 20(15): 4122–4131. (2001)
    67. Ratcliffe MJ, Itoh K, Sokol SY. A positive role for the PP2A catalytic subunit in Wnt signal transduction. J. Biol. Chem. 275(46): 35680–35683. (2000)
    68. Yang J, Wu J, Tan C, Klein PS. PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development (Camb.) 130(23): 5569–5578. (2003)
    69. Nybakken K, Vokes SA, Lin TY, McMahon AP, Perrimon N. A genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. Nat. Genet. 37(12): 1323–1332. (2005)
    70. Rorick AM, Mei W, Liette NL, Phiel C, El-Hodiri HM, Yang J. PP2A:B56epsilon is required for eye induction and eye field separation. Dev. Biol. 302(2): 477–493. (2007)
    71. Jia H, Liu Y, Yan W, Jia J. PP4 and PP2A regulate Hedgehog signaling by controlling Smo and Ci phosphorylation. Development (Camb.) 136(2): 307–316. (2009)
    72. Silverstein AM, Barrow CA, Davis AJ, Mumby MC. Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc Natl Acad Sci U S A. 99(7): 4221–4226. (2002)
    73. Letourneux C, Rocher G, Porteu F. B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J. 25(4): 727–738. (2006)
    74. Liu W, Silverstein AM, Shu H, Martinez B, Mumby MC. A functional genomics analysis of the B56 isoforms of Drosophila protein phosphatase 2A. Mol. Cell. Proteomics. 6(2): 319–332. (2007)
    75. Rocher G, Letourneux C, Lenormand P, Porteu F. Inhibition of B56-containing protein phosphatase 2As by the early response gene IEX-1 leads to control of Akt activity. J. Biol. Chem. 282(8) 5468–5477. (2007)
    76. Van Kanegan MJ, Adams DG, Wadzinski BE, Strack S. Distinct protein phosphatase 2A heterotrimers modulate growth factor signaling to extracellular signal-regulated kinases and Akt. J. Biol. Chem. 280(43): 36029–36036. (2005)
    77. Hannus M, Feiguin F, Heisenberg CP, Eaton S. Planar cell polarization requires Widerborst, a B' regulatory subunit of protein phosphatase 2A. Development (Camb.) 129(14): 3493–3503. (2002)
    78. Chen F, Archambault V, Kar A, Lio P, D’Avino PP, Sinka R, Lilley K, Laue ED, Deak P, Capalbo L, Glover DM. Multiple protein phosphatases are required for mitosis in Drosophila. Curr. Biol. 17(4): 293–303. (2007)
    79. Holland AJ, Bottger F, Stemmann O, Taylor SS. Protein phosphatase 2A and separase form a complex regulated by separase autocleavage. J. Biol. Chem. 282(34): 24623-24632. (2007)
    80. Graeber TG, Peterson JF, Tsai M, Monica K, Fornace AJ Jr, Giaccia AJ. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol. 14(9): 6264-6277 (1994).
    81. Hendrix P, Mayer-Jackel RE, Cron P, Goris J, Hofsteenge J, Merlevede W, Hemmings BA. Structure and expression of a 72-kDa regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. J Biol Chem. 268(20): 15267-15276 (1993).
    82. Cegielska A, Shaffer S, Derua R, Goris J, Virshup DM. Different oligomeric forms of protein phosphatase 2A activate and inhibit simian virus 40 DNA replication. Mol Cell Biol. 14(7): 4616-4623 (1994).
    83. Yan Z, Fedorov SA, Mumby MC, Williams RS. PR48, a Novel Regulatory Subunit of Protein Phosphatase 2A, Interacts with Cdc6 and Modulates DNA Replication in Human Cells. Mol Cell Biol. 20(3): 1021-1029 (2000).
    84. Voorhoeve PM, Hijmans EM, Bernards R. Functional interaction between a novel protein phosphatase 2A regulatory subunit, PR59, and the retinoblastoma-related p107 protein. Oncogene. 18(2): 515-524 (1999).
    85. Moreno CS, Park S, Nelson K, Ashby D, Hubalek F, Lane WS, Pallas DC. WD40 repeat proteins striatin and S/G(2) nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. J Biol Chem. 275(8): 5257-5263. (2000).
    86. Lu Q, Pallas DC, Surks HK, Baur WE, Mendelsohn ME, Karas RH. Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by estrogen receptor alpha. Proc Natl Acad Sci U S A. 101(49): 17126-17131. (2004)
    87. Turowski P, Fernandez A, Favre B, Lamb NJ, Hemmings BA. Differential methylation and altered conformation of cytoplasmic and nuclear forms of protein phosphatase 2A during cell cycle progression. J Cell Biol. 129(2): 397-410. (1995)
    88. Strack S, Westphal RS, Colbran RJ, Ebner FF, Wadzinski BE. Protein serine/threonine phosphatase 1 and 2A associate with and dephosphorylate neurofilaments. Brain Res Mol Brain Res. 49(1-2): 15-28. (1997)
    89. Nagase T, Murakami T, Nozaki H, Inoue R, Nishito Y, Tanabe O, Usui H, Takeda M. Tissue and subcellular distributions, and characterization of rat brain protein phosphatase 2A containing a 72-kDa delta/B" subunit. J Biochem. 122(1): 178-187. (1997)
    90. Ito A, Kataoka TR, Watanabe M, Nishiyama K, Mazaki Y, Sabe H, Kitamura Y, Nojima H. A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J. 19(4): 562-571. (2000)
    91. Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 9(4): 789-798. (2002)
    92. Kerppola TK. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 1(3): 1278-1286, (2006).
    93. Förster T. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discussions of the Faraday Society. 27: 7-17. (1959)
    94. Zhang J, Campbell RE, Ting AY, Tsien RY. Creating new fluorescent probes for cell biology. Nature Rev Mol Cell Biol. 3(12): 906-918. (2002)
    95. Jares-Erijman EA, Jovin TM. FRET imaging. Nature Biotechnol. 21(11): 1387-1395 (2003).
    96. Miyawaki A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell. 4(3): 295-305 (2003).
    97. Zhu L, Tran T, Rukstalis JM, Sun P, Damsz B, Konieczny SF. Inhibition of Mist1 homodimer formation induces pancreatic acinar-to-ductal metaplasia. Mol Cell Biol. 24(7): 2673-2681 (2004).
    98. Nyfeler B, Michnick SW, Hauri HP. Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci USA. 102(18): 6350-6355 (2005).
    99. Fang D, Kerppola TK. Ubiquitin-mediated fluorescence complementation reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes. Proc Natl Acad Sci USA. 101(41): 14782-14787 (2004).
    100. Hu CD, Kerppola TK. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol. 21(5): 539-545 (2003).
    101. Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40(3): 428-438 (2004).
    102. Cole KC, McLaughlin HW, Johnson DI. Use of bimolecular fluorescence complementation to study in vivo interactions between Cdc42p and Rdi1p of Saccharomyces cerevisiae. Eukaryot Cell. 6(3): 378-387 (2007).
    103. Morell M, Espargaro A, Aviles FX, Ventura S. Detection of transient protein-protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case. Proteomics. 7(7): 1023-1036 (2007).
    104. Hoff B, Kuck U. Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Curr Genet. 47(2): 132-138 (2005).
    105. Kamibayashi C, Mumby MC. Control of protein phosphatase 2A by multiple families of regulatory subunits. Adv. Protein Phosphatases. 9: 195-210. (1995)
    106. Sontag JM, Sontag E. Regulation of cell adhesion by PP2A and SV40 small tumor antigen: An important link to cell transformation. Cell Mol Life Sci. 63(24): 2979-2991. (2006)
    107. Nunbhakdi-Craig V, Craig L, Machleidt T, Sontag E. Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. J Virol. 77(5): 2807-2818. (2003)
    108. Chen Y, Xu Y, Bao Q, Xing Y, Li Z, Lin Z, Stock JB, Jeffrey PD, Shi Y. Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nat Struct Mol Biol. 14(6): 527-534. (2007)
    109. Cho US, Morrone S, Sablina AA, Arroyo JD, Hahn WC, Xu W. Structural basis of PP2A inhibition by small t antigen. PLoS Biol. 5(8): e202. (2007)
    110. Dagda RK, Barwacz CA, Cribbs JT, Strack S. Unfolding-resistant translocase targeting: a novel mechanism for outer mitochondrial membrane localization exemplified by the Bbeta2 regulatory subunit of protein phosphatase 2A. J Biol Chem. 280(29): 27375-82. (2005)
    111. Gelb BD, Adams V, Jones SN, Griffin LD, MacGregor GR, McCabe ER. Targeting of hexokinase 1 to liver and hepatoma mitochondria. Proc Natl Acad Sci U S A. 89(1): 202-206. (1992)
    112. Hatch GM. Cardiolipin: biosynthesis, remodeling and trafficking in the heart and mammalian cells. Int J Mol Med. 1(1): 33-41. (1998)
    113. Alto NM, Soderling J, Scott JD. Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol. 158(4): 659-668. (2002)
    114. Huang LJ, Wang L, Ma Y, Durick K, Perkins G, Deerinck TJ, Ellisman MH, Taylor SS. NH2-Terminal targeting motifs direct dual specificity A-kinase-anchoring protein 1 (D-AKAP1) to either mitochondria or endoplasmic reticulum. J Cell Biol. 145(5): 951-959. (1999)
    115. Chen Q, Lin RY, Rubin CS. Organelle-specific targeting of protein kinase AII (PKAII). Molecular and in situ characterization of murine A kinase anchor proteins that recruit regulatory subunits of PKAII to the cytoplasmic surface of mitochondria. J Biol Chem. 272(24): 15247–15257. (1997)
    116. Dagda RK, Zaucha JA, Wadzinski BE, Strack S. A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem. 278(27): 24976-24985. (2003)

    下載圖示 校內:2015-08-30公開
    校外:2015-08-30公開
    QR CODE