| 研究生: |
戴禎儀 Tai, Chen-Yi |
|---|---|
| 論文名稱: |
低損耗鎂鋁尖晶石固溶體 (Mg1-xM2+x)Al2O4 (M2+ = Zn and Ni)微波介電材料 Low-Loss Microwave Dielectrics in the Spinel-structured (Mg1-xM2+x)Al2O4 (M2+ = Zn and Ni) Solid solutions |
| 指導教授: |
黃正亮
Huang, Cheng-Liang 黃啟原 Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 微量添加 、微波介電 、尖晶石 、陶瓷 、固溶 |
| 外文關鍵詞: | microwave dielectric, solid solution, small amount, spinel, ceramic |
| 相關次數: | 點閱:77 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以 MgAl2O4為主體,利用固態反應法合成 (Mg1-xMx')Al2O4,其中M' = Zn 與 Ni,於 1480℃到 1600℃進行燒結,討論添加 M'前後,對材料及微波介電性質 之影響;由實驗結果得知合成 (Mg1-xZnx)Al2O4 (x = 0-0.1) 相。
當 Zn微量添加 ( x = 0.05),其材料微波介電性質最佳,介電常數 ~ 7.93–8.11、Q×f ~ 156,000 GHz (15.6 GHz)
與溫度頻率飄移係數介於 –55 ~ –70 ppm/℃,其燒結體相對密度為 97.2%;當未添加Zn 之 MgAl2O4,Q×f ~ 86,000 GHz,
由此得知,微量添加 Zn對於材料之品質因子可提升約 82%。
另一方面,合成 NiAl2O4,介電常數約 7.78–8.04,Q×f最高值 ~ 62,000 GHz,溫度頻率飄移係數於 –48~ –50 ppm/℃,相對密度為 90.5%,
其固溶體部分 (Mg1-xNix)Al2O4(x = 0–1),當 x = 0.25時,可獲得最佳微波介電特性,介電常數介於8.18–8.21之間,Q×f ~ 130,000 GHz (15.4 GHz),
溫度頻率飄移係數於 –51 ~ –65 ppm/℃;(Mg1-xNix)Al2O4(x = 0–1),於相同燒結條件下,隨 Ni添加量增加,嘗試計算其極化率、晶格體積以及相對密度。
根據各項結果顯示,(Mg1-xMx')Al2O4,其中M' = Zn 與 Ni, 隨 M'添加量改變,可討論受外在與內在之因素的影響包括,密度 (孔隙率)、晶格常數、極化率、晶粒大小變化,進而探討微波介電性質與材料性質之關係。
MgAl2O4 -based microwave dielectric ceramics substiute Mg by Zn and Ni were synthesized using the solid state reaction forming spinel solid solution of
(Mg1-xMx')Al2O4,M' = Zn and Ni.
Dense ceramics were obtained by sintering at 1480℃ to 1600℃, in air for 3 h.
It can be observed from X-ray diffraction result that the single phase solid solutions.
The microwave dielectric properties of MgAl2O4,
the dielectric constant 7.67-7.99, Q×f ~ 86,000 and τf -65 ~ -68 ppm/℃.
With small amount Zn ion substitution for Mg^(2+)at x = 0.05, The dielectric constant of (Mg0.95Zn0.05)Al2O4 from 7.93 to 8.11, compare with MgAl2O4 ,
ceramics while the Q×f value had significantly improved up to maxmal value of 156,000 GHz (15.6 GHz) and τ_f values from –55 to –70 ppm/℃.
Moreover,MgAl2O4 microwave dielectric ceramics were modified by Ni ion substitution for Mg forming (Mg1-xNix)Al2O4 at x = 0-1.
The compounds NiAl2O4 , dielectric constant ~ 7.78–8.04, Q×f ~ 62,000 GHz and τf ~ –48~ –50 ppm/℃. With Ni ion substitution for Mg ion at x = 0.25, the Q×f
increase to 130,000 GHz (15.4 GHz), εr ~ 8.18–8.21 and τ_f from –51 to –65 ppm/℃.
Relying on the result, it could be discussed the relationship of spinel solid solution structure and
microwave dielectric properties, including grain size, density and ionic polarizability in the (Mg1-xMx')Al2O4,M' = Zn and Ni system.
1.R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Found. Crystallogr., 32, 751 (1976).
2.K. P. Surendran, P. V. Bijumon, P. Mohanan, and M. T. Sebastian, “(1-x) MgAl2O4-x TiO2 dielectrics for microwave and millimeter wave applications,” Appl. Phys. A., 81, 823 – 826 (2005).
3.K. P. Surendran, P. V. Bijumon, P. Mohanan, and M. T. Sebastian, “A low loss, dielectric substrate in ZnAl2O4-TiO2 system for microelectronic applications,” J. Appl. Phys., 98, 044101 (2005).
4.J. H. Sohn, T. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoonand and H. J. Kim, “Microwave dielectric characteristics of ilmenite-type titanates with high Q values,” Jpn. J. Appl. Phys., 33, 5466-5470 (1994).
5.A. Belous, O. Ovchar, D. Durylin, M. Valant, M. M-K, and D. Suvorov, “Microwave composite dielectrics based on magnesium titanates,” J. Eur. Cerarn. Soc., 27, 2963-2966 (2007).
6.邱碧秀,電子陶瓷材料,徐氏基金會出版,1997。
7.袁帝文、王岳華、謝孟翰、王弘毅, 高頻通訊電路設計,高立圖書有限公司,2-7 (2000)。
8.陶瓷材料概論(下),Kingery, Bowen, Uhlmann著,陳皇鈞譯,曉園出版社 ,870-871 (2006)。
9.D. M. Pozar, “Microwave engineering,” Addison-Wesley (1998).
10.D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators, ” Microwave SysTFm News, 13, 152-161 (1983).
11.R. Heidinger and S. Nazare, ‘‘Influence of porosity on the dielectric properties of AIN in the range of 30-40 GHz,” Powder Metall. Int., 20, 30-32 (1988).
12.S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina,” J. Am. Ceram. Soc., 80 [7], 1885-88 (1997).
13.E. H. Walker, “The novel low temperature synthesis of nano crystalline MgAl2O4 spinel using "gel" precursors,” Mater. Res. Bull., 37, 1041-1050 (2002).
14.余樹楨,晶體之結構與性質,渤海堂文化公司,300-303 (2007)。
15.N. J. van der Laag, M. D. Snel, P. C. M. M. Magusin, and G.. de With “ Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4),” J. Eur. Cerarn. Soc., 24, 2417–2424 (2004).
16.R.. K. Datta and R. Roy, “Order-disorder in MgAl2O4 the system: MgAl2O4- LiAl6O8, MgAl2O4-NiCr2O4, MgAl2O4-NiAl2O4, and NiAl2O4-ZnAl2O4,” Am. Mineral., 53, 1456-1475 (1968).
17.S.T. Murphy, B.P. Uberuaga, J.B. Ball, et al, “Cation diffusion in magnesium aluminate spinel,” Soild State Ionics, 180, 1-8 (2009).
18.S. M. Hosseini, “Structural, electronic and optical properties of spinel MgAl2O4 oxide,” Phys. status solidi B, 245, 12, 2800–2807 (2008).
19.B. Phillips, J. J. Hutta, and I. Warshaw, “Phase equilibria in the system NiO-AI,O,-SiO,” J. Am. Ceram. Soc., 46, 12, 579-583 (1963).
20.C. W. Zheng, S. Y. Wu, X. M. Chen, and K. X. Song, “Modification of MgAl2O4 microwave dielectric ceramics by Zn Substitution,” J. Am. Ceram. Soc., 90 [5], 1483–1486 (2007).
21.A. N. Cormack, G. V. Lewis, S. C. Parker and C. R. A. Catlow, “On the cation distribution of spinels,” J. Phys. Chem. Solids., 49, 1, 53-57, (1988).
22.H. St. C. O'Neill and A. Navrotsky, “Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution,” Am. Mineral., 68, 181-194 (1983).
23.M. A. Petrova, G. A. Mikirticheva, A. S. Novikova, and V. F. Popova, “Spinel solid solutions in the systems MgAl2O4 –ZnAl2O4 and MgAl2O4–Mg2TiO4,” J. Materal. Res., 12 [10], 2584-2588 (1997).
24.I. Ganesh, J. M. F. Ferreira, “Synthesis and characterization of MgAl2O4–ZrO2 composites,” Ceram. Int., 35, 259–264 (2009).
25.P. Barpanda, S. K. Behera, P. K. Gupta, S. K. Pratihar, and S. Bhattacharya, “Chemically induced order disorder transition in maghesium aluminium spinel,” J. Eur. Ceram. Soc., 26, 2603-2609 (2006).
26.R. D. Shannon, G. R. Rossman “Dielectric constant of MgAl2O4 spinel and the oxide additivity rule,” J. Phys. Chem. Solid., 52 [9], 1055-1059 (1991).
27.W. Lei, W. Z. Lu, J. H. Zhu, and X. H. Wang, “Microwave dielectric properties of ZnAl2O4 - TiO2 spinel-based composites,” Mater. Let., 61, 4066-4069 (2007).
28.W. Lei, W. Z. Lu, J. H. Zhu, F. Liang, and D. Liu, “Modification of ZnAl2O4-based low-permittivity microwave dielectric ceramics by adding 2MO-TiO2 (M=Co, Mg, and Mn), J. Am. Ceram. Soc., 91, 958-1961 (2008)
29.N. Mori, Y. Sugimoto, J. Harada, and Y. Higuchi, “Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies,” J. Eur. Ceram. Soc., 26, 1925–1928 (2006).
30.G. C. Kuczynski, Sintering and related phenomena, Gorden and Breach Science Publisher, (1965).
31.R. L. Coble, “Sintering crystalline solids. Ι. Intermediate and final state diffusion models,” J. Appl. Phys., 32, 787 (1961).
32.C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. Thesis, The Pennsylvania State University, U.S.A. (1990).
33.王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立成功大學電機工程研究所碩士論文 (2003)。
34.C. L. Huang, J. L. Hou, C.L. Pan, C. Y. Huang, C. W. Peng, C. H. Wei, and Y. H. Huang, “Effect of ZnO additive on sintering behavior and microwave dielectric properties of 0.95 MgTiO3–0.05 CaTiO3 ceramics,” J. Alloys Compd., 450, 359–363 (2008).
35.S. Solomon, J. T. Joseph, H. P. Kumar, and J. K. Thomas, “Effect of ZnO doping on the microwave dielectric properties of LnTiNbO6 (Ln=Sm or Dy) ceramics,” Mater. Lett., 60, 2814–2818 (2006).
36.S. Y. Cho, M. K. Seo, K. S. Hong, and S. J. Park, “Influence of ZnO evaporation on the microwave dielectric properties of La (Zn1/2Ti1/2) O3,” Mater. Res. Bull., 32, 6, 725-735 (1997).
37.J. D. Breeze, J. M. Perkins, D. W. McComb, and N. M. Alford, “Do grain boundaries affect microwave dielectric loss in oxides,” J. Am. Ceram. Soc., 92 [3], 671–674 (2009).
38.C. L. Huang and C. H. Shen, “Phase evolution and dielectric properties of (Mg0.95M2+0.05) Ti2O5,” J. Am. Ceram. Soc., 92 [2], 384-388 (2009).
39.S. J. Penn, N. Mcn. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina,” J. Am. Ceram. Soc., 80 [7], 1885-1888 (1997).
40.H. Ogawaa, A. Kana, S. Ishiharaa, and Y. Higashida, “Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss,” J. Eur. Ceram. Soc., 23, 2485–2488 (2003).
41.W. Lei, W. Z. Lu, D. Liu, and J. H. Zhu, “Phase evalution and microwave dielectric properties of (1-x) ZnAl2O4_ x Mg2TiO4 ceramics,” J. Am. Ceram. Soc., 92 [1], 105-109 (2009).