| 研究生: |
林郁欣 Lin, Yu-Hsin |
|---|---|
| 論文名稱: |
整合微鉑溫度感測器於熱泡致動器之研究發展 Development of Integrated Micro Platinum Temperature Sensors in A Novel Thermal Bubble Actuator |
| 指導教授: |
呂宗行
Leu, T. S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 高速顯微影像偵測 、微熱泡產生機制 、微熱泡產生器 、微噴射致動器 、微鉑溫度感測器 、列印技術 |
| 外文關鍵詞: | Temperature Sensor, Bubble Formation, Microinjector, Ink-Jet Printing Technology, Thermal Bubble Actuator, High-Speed Microscopic Imaging System |
| 相關次數: | 點閱:90 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
噴墨頭『列印技術』(Ink-Jet Printing Technology)由於是數值驅動,自動化程度高,面對電子工業製造技術對自動化、微小化、降低成本、降低時程、減少環境的衝擊等的要求與趨勢,噴墨列印技術可達到不需使用遮罩,材料利用率高,製程步驟減少,成本降低;減少或不需要使用溶劑,製程廢棄物減少,降低對環境的衝擊,提供極具吸引力之材料微分配(Micro-Dispensing)替代技術之製程潛能。
本研究主要是以機電製程加工技術整合微鉑加熱器(Micro Heater)、微鉑溫度感測器(Micro Temperature Sensor),製作一微熱泡致動器(Thermal Bubble Actuator),每一個致動器晶片內均含有 組微鉑加熱器、微鉑溫度感測器的陣列,以及 組用來破壞表面張力的微鉑加熱器,利用致動器內的微鉑加熱器陣列(Micro-Heater Array)驅動微流道(Micro Channel)內液體噴射,噴射的體積決定於微型加熱器致動的數量,為一種同時兼具致動元件與感測元件之反應系統組合。
以自行發展之微流體觀測分析實驗系統,產生脈衝電壓與延遲訊號,利用高速攝影機及高速閃頻(Stroboscope)設備,測試自行製造之微熱泡致動器,已證實高速顯微影像偵測可幫助我們了解整個微熱泡致動器內的氣泡產生機制,對於微流體系統實為值得發展的一套系統。
透過實驗將分析所得數據及研究成果,對HP c6614d No.20墨水匣所進行之噴墨液滴分裂的性能分析,HP墨水匣的解析度仍具有很大的空間進行改善。以鉑金屬為溫度量測元件之構想,藉由定電流瞬間微熱泡產生機制之電阻與溫度響應實驗,證實以鉑金屬為溫度量測元件之構想可應用於微熱泡致動器,於電阻與溫度響應實驗知其時間常數 t 介於0.1秒~0.01秒之間。另外,對於高溫熱融合晶片接合製程部分,溫度與時間的控制是關鍵的一環,升溫速率為 ,定溫580℃持續烘烤5小時,降溫速度 ,此外,以鈦金屬作為黏著層的金屬材料較過去以鉻金屬作為黏著層更適合於高溫熱融合晶片接合製程。
In this thesis, novel thermal bubble actuator has been designed and fabricated for bubble actuator studies. Micro platinum heaters and temperature sensors are integrated within the actuator to study the detailed dynamics of the thermal bubble actuator. Each actuator contains four sets of microheaters/microsensors in the firing chamber, and one set of microheater for the surface tension breaker at the nozzle exit. By actuating the microheater array, the bubble can be generated to eject the liquid droplet out of micro nozzle. According to the number of the microheater actuated, the volume of the liquid droplet can be controlled. Bubbles generated in the firing chamber not only function as a pump, but also serve as a flow regulator between the chamber and the liquid supply. This mechanism can eliminate the bottleneck design, which is use for hydrodynamics cross talk in a conventional inkjet printhead.
To investigate the dynamics of the novel thermal bubble actuator, a high speed microscopic imaging system was developed. The high-speed microscopic imaging system will help us diagnose the bubble nucleation, bubble growth and collapse, droplet breakup process, as well as the refilling process. From testing results of the experiment by using a commercial actuator HP ink-jet printhead, the performance of HPc6614d No.20 ink-jet printhead still has plenty of room to be improved. For example, the satellite droplets are found in HP printhead. Satellite droplets means non-uniform droplet sizes, which will degrade the printing quality. For the current thermal bubble actuator, surface tension breaker was design to manipulate the surface tension at the nozzle exit, which use to eliminate satellite droplets.
1 T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J.C. Sturm, “Ink-jet Printing of Doped Polymers for Organic Light Emitting Devices”, Applied Physics Letters, Vol.72, No.5, p519~p521, 1998
2 Patrick Cooley, David Wallace, Bogdan Antohe, MicroFab Technologies, Inc, “Applications of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems”, Proceedings, SPIE Conference on Microfluidic and BioMEMS, p1~p12, October, 2001
3 D. Hayes, R. Cox and M. Grove, “Low-Cost Display Assembly and Interconnect Using Ink-Jet Printing Technology”, MicroFab Technologies, Inc.
4 D. Hayes, D. Wallace and R. Cox, “MicroJet Printing of Solder and Multi-Chip Modules and Chip-Scale Packages”, MicroFab Technologies, Inc.
5 M. Grove, D. Hayes, R. Cox, D. Wallace, “Color Flat Panel Manufacturing Using Ink Jet Technology”, MicroFab Technologies, Inc.
6 R. Mills, “Ink Jet Printing – Past, Present and Future”, IS&T’s Tenth International Congress on Advances in Non-Impact Printing Technologies, New Orleans, Louisiana, Oct. 30-Nov. 4, 1994
7 E. Webster, “Ink Jet Printing: Its role in Word Processing and Future Printing Markets”, Datek of New England, Newtonville, MA, March 1980
8 M. Zeis, “HP’s 1200C is Designed for Speeed, Low Operating Cost, and Plain Paper Printing”, Color Business Report, Vol3, No. 5, May 1993
9 J. A. Katerberg, “Drop charging and deflection using a planar charge plate”, 4th International Congress on Advances in Non-Impact Printing Technologies, New Orleans, Louisiana, Oct. 30-Nov. 4, 1988
10 C. Bardeau, D. Fressard, P. Atten, and B. Barbet, “Formation pf Isolated Drops in a Continuous Jet”, IS&T’s Tenth International Congress on Advances in Non-Impact Printing Technologies, New Orleans, Louisiana, Oct. 30-Nov. 4, 1994
11 Randy Fagerquist, “Jet Wave and Droplet Velocities for a Continuous Fluid Jet”, IS&T’s Eleven International Congress on Advances in Non-Impact Printing Technologies, Hilton Head, South Carolina, Oct. 30-Nov. 3, 1995
12 H. Le, “Progress and Trends in Ink-jet Printing Technology”, Journal of Imaging Science and Technology, Vol.42, No.1, p49~p62, January/February 1998
13 P. McClelland, “New Directions in Print Head Construction”, IS&T’s Eleven International Congress on Advances in Non-Impact Printing Technologies, Hilton Head, South Carolina, Oct. 30-Nov. 3, 1995
14 Tsuyoshi Kitahara, “Ink Jet Head with Multi-Layer Piezoeelctric Actuator”, IS&T’s Eleven International Congress on Advances in Non-Impact Printing Technologies, Hilton Head, South Carolina, Oct. 30-Nov. 3, 1995
15 M. P. O’Horo, N. V. Deshpanda and D. J. Drake, “Drop Generation Processes in TIJ Printheads, IS&T’s Tenth International Congress on Advances in Non-Impact Printing Technologies, New Orleans, Louisian, Oct. 30-Nov. 4, 1994
16 Fan-Gang Tseng, Chang-Jin ”CJ” Kim, and Chih-Ming Ho, “A Novel Microinjector with Virtual Chamber Neck”, Proc. 11th IEEE workshop on MEMS, Heidelberg, Germany, Jan. 25-29, 1998
17 Fan-Gang Tseng, “A Micro Droplet Injector System”, PhD thesis of UCLA, 1998
18 A.Asai, T. Hara, I. Endo, “One-Dimensional Model of Bubble Growth and Liquid Flow in Bubble Jet Printers”, Vol.26, No.10, p1794~p1801, 1987
19 HP Inkjet Technology Leadership
20 S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A high Resolution, Electrostatically-Driven Commercial Inkjet Head”, The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, p793~p798, Jan. 23-27, 2000
21 S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A Low Power, Small, Electrostatically-Driven Commercial Inkjet Head”, The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, Jan. 25-29, p63~p68, 1998
22 D. Huang and E. S. Kim, “Micromachined Acoustic-Wave Liquid Ejector”, Journal of Microelectromechanical Systems, Vol.10, No.3, p442-p449, Sept. 2001
23 Tae Goo Kang, Young-Ho Cho, “Droplet Volume Adjustable Microinjectors using Microheater Array”, IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Jan. 19-23, 2003
24 Fan-Gang Tseng, Chang-Jin ”CJ” Kim, and Chih-Ming Ho, “A Novel Microinjector with Virtual Chamber Neck”, Proc. 11th IEEE MicroElectroMechanical System Workshop ,Heidelberg, Germany, Jan. 25-29, p57-62, 1998
25 Fan-Gang Tseng, “A Micro Droplet Injector System”, PhD thesis of UCLA, 1998
26 Yi-Kuen, Ui-Chong Yi, Fan-Gang Tseng, “CJ”Kim and Chih-Ming Ho, “Fuel Injection by a Thermal MicroInjector”, ASME Int. Mechanical Engineering Congress and Exposition, Nashville, TN, p419~p425, Nov. 1999
27 Fan-Gang Tseng, “CJ”Kim and Chih-Ming Ho, “A Microinjetor Free of Satellite Drops and Characterization of The Ejected Droplets”, ASME 1998
28 Fan-Gang Tseng, “CJ”Kim and Chih-Ming Ho, “A High-Resolution High-Frequency Monolithic Top-Shooting Microinjector Free of Satellite Drops”, Journal of MicroElectroMechanical System, Vol.11, No.5, Oct. 2002
29 廖仁瑞, (2002), “微機電技術製作之白金觸媒反應系統的研發,” 國立成功大學航空太空工程學系碩士論文
30 R. R. Allen, J. D. Meyer, and W. R. Knight, “Thermodynamics and Hydrodynamics of Thermal Ink Jets”, Hewlett-Packard Journal, p21~p26, May. 1985
31 呂宗行, 林郁欣, ”噴墨頭噴印精進技術於三維快速成型精密製造應用”, 2003精密機械與製造技術研討會,May 30-June 1, 2003, (NSC 91-2212-E-006-124)
32 呂宗行, 林郁欣, ”新型噴墨頭製造及其診斷技術於三維快速成型精密製造應用”, 中華民國燃燒學會第十四屆學術研討會, March 27, 2004
33 莊達人, “VLSI 製造技術”, 四版, 高立圖書, 台北縣, 2001
34 D. M. Freeman, “Computer Microvision for MEMS”, Quarterly progress report, page 9, Nov. 2001, (F30602-97-2-0106)
35 J-Hung Tsai, and Liwei Lin, “Transient Thermal Bubble Formation on Polysilicon Micro-Resisters”, Journal of Heat Transfer, Vol.124, p375~p382, ASME 2002
36 H. Yuan, H. N. Oguz, A. Prosperetti, “Growth and Collapse of a Vapor Bubble in a Small Tube”, Int. J. Heat Mass Transf., 42, p3643~p3657, 1999
37 W. J. Yang, and K. Tsutsui, “Overview of Boiling on Microstructures- Macro Bubbles From Micro Heaters”, Microscale Thermophys. Eng., Vol.4, No.1, p7~p24, 2000