| 研究生: |
張氏說 Truong, Thi-Thuyet |
|---|---|
| 論文名稱: |
低-強度低-頻率超音波對運動神經細胞之影響 The effects of low-intensity low-frequency ultrasound on motor neuron cells |
| 指導教授: |
黃執中
Huang, Chih-Chung 邱文泰 Chiu, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 超音波治療 、低強度脈衝超音波 、運動神經元形態 、分化 、NSC-34細胞 |
| 外文關鍵詞: | Ultrasound therapeutic, low-intensity low-frequency pulse ultrasound, motor neuron, morphology, changes, NSC-34 cell |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:運動神經元疾病是最常見的神經退化性疾病,包括肌萎縮性側索硬化症(ALS),帕金森氏病,這是神經細胞逐漸喪失的原因。 NSC-34細胞係由小鼠脊髓細胞與神經母細胞瘤雜交所生成的融合瘤,在研究低強度低頻超音波(LIPUS)的作用中,提供了一個有效的模型用來研究運動神經元疾病的療法。
方法:在種細胞的第2天和第4天後,使用LIPUS刺激NSC-34細胞。與對照組進行比較,使用中心頻率為1.15 MHz且總能量(171.25 W / cm2)的非聚焦換能器,並透過充滿水的壓克力管持續以機械效應刺激NSC-34細胞8分鐘可以促使細胞增殖,也會提升NSC-34細胞的形態分化。另外,還根據NSC-34的神經突的增生檢查陽離子通道和一些轉錄因子。
結果:在171.25 W / cm2的超音波作用下,LIPUS組在第2天和第4天之NSC-34細胞的增殖和形態分化顯著增加。此外,我們還發現由於鈣離子的正向作用,LIPUS組的神經突出向外生長,並且與鈣依賴性轉錄因子(NFAT, NFB和CREB)具有重要且密切之相關。我們的發現闡明LIPUS對NSC-34運動神經元的刺激可誘導鈣信號以激活鈣依賴性轉錄因子,從而促進神經細胞形態改變以及數量的顯著增加。LIPUS是未來可應用於改善運動神經元疾病治療的非侵入性方法。
Background: Motor neuron diseases are primarily common neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Parkinson's disease, which is a gradual loss of nerve cells. NSC-34 cell line is a hybridoma generated by mouse spinal cord cells with neuroblastoma used to be investigated the effect of the low-intensity pulsed ultrasound (LIPUS) that presents a valid model system for investigating the treatment of motor neuron diseases.
Methods: The NSC-34 cells were stimulated by LIPUS on day 2 and day 4 after seeding. A non-focused transducer 1 MHz of frequency and total energy level (171.25 W/cm2) was used to stimulate the NSC-34 cells through a water tube by the mechanical effects for 8 minutes. Then, cell proliferation, the morphological changes of NSC-34 cells under LIPUS stimulation were taken and compared with control groups. In addition, the calcium (Ca2+) channels and some Ca2+-dependent transcriptions factors were also examined based on the enhanced neurite outgrowth of NSC-34.
Results: The proliferation and morphological changes of NSC-34 were significantly increased in the LIPUS group on days 2 and 4. Furthermore, we also found that neurite outgrowth in LIPUS groups due to the positive effects of Ca2+ signalings are important in and closely related to Ca2+-dependent transcription factors (NFAT; NFB and CREB). Our findings suggested that stimulation of LIPUS to NSC-34 motor neurons induced calcium signals to activate transcription factors, which facilitate significantly increased morphology as well as the number of nerve cells. LIPUS is a non-invasive method that can be applied to improve the treatment of motor neuron diseases in the future.
[1] C. Cave and S. Sockanathan, “Transcription factor mechanisms guiding motor neuron changes and diversification,” Curr. Opin. Neurobiol., vol. 53, pp. 1–7, 2018, doi: 10.1016/j.conb.2018.04.012.
[2] E. S. Han, A. Goleman, Biology2e, vol. 53, no. 9. 2019.
[3] M. Urbanska, M. Blazejczyk, and J. Jaworski, “Molecular basis of dendritic arborization,” Acta Neurobiol. Exp. (Wars)., vol. 68, no. 2, pp. 264–288, 2008, PMID: 18511961.
[4] D. Debanne, E. Campanac, A. Bialowas, E. Carlier, and G. Alcaraz, “Axon physiology,” Physiol. Rev., vol. 91, no. 2, pp. 555–602, 2011, doi: 10.1152/physrev.00048.2009.
[5] G. Tavosanis, “Dendritic structural plasticity,” Dev. Neurobiol., vol. 72, no. 1, pp. 73–86, 2012, doi: 10.1002/dneu.20951.
[6] S. Przedborski, M. Vila and V. Jackson-Lewis, “Neurodegeneration: What is it and where are we?,” J. Clin. Invest., vol. 111, no. 1, pp. 3–10, 2003, doi: 10.1172/JCI200317522.
[7] G. Deuschl et al., “The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017,” Lancet Public Heal., vol. 5, no. 10, pp. e551–e567, 2020, doi: 10.1016/S2468-2667(20)30190-0.
[8] B. Richard, C. Hongmei, R. Yu, Y. Tao and D. Nikolic, “Motor neuron degeneration promotes neural progenitor cell proliferation, migration and neurogenesis in the spinal cords of ALS mice” Bone, vol. 23, no. 1, pp. 1–7, 2005, [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.
[9] L. Ferraiuolo, J. Kirby, A. J. Grierson, M. Sendtner and P. J. Shaw, “Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis,” Nat. Rev. Neurol., vol. 7, no. 11, pp. 616–630, 2011, doi: 10.1038/nrneurol.2011.152.
[10] P. J. Shaw, “Science, medicine, and the future: Motor neurone disease,” BMJ, vol. 318, no. 7191, pp. 1118–1121, 1999, doi: 10.1136/bmj.318.7191.1118.
[11] P. F.Chance et al., “Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34,” Am. J. Hum. Genet., vol. 62, no. 3, pp. 633–640, 1998, doi: 10.1086/301769.
[12] P. F. Chance et al., “Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34,” Am. J. Hum. Genet., vol. 62, no. 3, pp. 633–640, 1998, doi: 10.1086/301769.
[13] L. J. Martin, “Mitochondrial and cell death mechanisms in neurodegenerative diseases,” Pharmaceuticals, vol. 3, no. 4, pp. 839–915, 2010, doi: 10.3390/ph3040839.
[14] M. J. Kipanyula, W. H. Kimaro, and P. F. S. Etet, “The emerging roles of the calcineurin-nuclear factor of activated t-lymphocytes pathway in nervous system functions and diseases,” J. Aging Res., vol. 2016, 2016, doi: 10.1155/2016/5081021.
[15] S. Konur and A. Ghosh, “Calcium signaling and the control of dendritic development,” Neuron, vol. 46, no. 3, pp. 401–405, 2005, doi: 10.1016/j.neuron.2005.04.022.
[16] L. Redmond, A. H. Kashani and A. Ghosh, “Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription,” Neuron, vol. 34, no. 6, pp. 999–1010, 2002, doi: 10.1016/S0896-6273(02)00737-7.
[17] P. L. Greer and M. E. Greenberg, “From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function,” Neuron, vol. 59, no. 6, pp. 846–860, 2008, doi: 10.1016/j.neuron.2008.09.002.
[18] K. K. Shung, Diagnostic Ultrasound: Imaging and Blood Flow Measurements, 2nd Edition. Boca Raton: CRC Press, 2006.
[19] W. D. O’Brien, “Ultrasound-biophysics mechanisms,” Prog. Biophys. Mol. Biol., vol. 93, no. 1–3, pp. 212–255, 2007, doi: 10.1016/j.pbiomolbio.2006.07.010.
[20] T. Watson, “Therapeutic Ultrasound”, pp. 1–18, 2015, doi: 10.1016/B978-1-4377-0309-2.00019-3.
[21] M. A. A. Wahab, R. Sudirman, C. Omar and I. Ariffin, “Design of an A-mode ultrasound amplifier for bone porosity detection,” 2016 Int. Symp. Electron. Smart Devices, ISESD 2016, pp. 79–84, 2017, doi: 10.1109/ISESD.2016.7886696.
[22] N. Dragicevic and H. I. Maibach, Percutaneous penetration enhancers physical methods in penetration enhancement. 2017.
[23] F. Ahmadi, I. V. McLoughlin, S. Chauhan and G. ter-Haar, “Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure,” Prog. Biophys. Mol. Biol., vol. 108, no. 3, pp. 119–138, 2012, doi: 10.1016/j.pbiomolbio.2012.01.004.
[24] J. J. Lacroix and A. D. Ozkan, “Multiplexing focused ultrasound stimulation with fluorescence microscopy,” J. Vis. Exp., vol. 2019, no. 143, pp. 1–10, 2019, doi: 10.3791/58781.
[25] G. ter-Haar, “Therapeutic applications of ultrasound,” Prog. Biophys. Mol. Biol., vol. 93, no. 1–3, pp. 111–129, 2007, doi: 10.1016/j.pbiomolbio.2006.07.005.
[26] F. A. Duck, “Medical and non-medical protection standards for ultrasound and infrasound,” Prog. Biophys. Mol. Biol., vol. 93, no. 1–3, pp. 176–191, 2007, doi: 10.1016/j.pbiomolbio.2006.07.008.
[27] W. J. Tyler, Y. Tufail, M. Finsterwald, M. L.Tauchmann, E. J. Olson, and C. Majestic, “Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound,” PLoS One, vol. 3, no. 10, 2008, doi: 10.1371/journal.pone.0003511.
[28] Y. Tufail, A. Yoshihiro, S. Pati, M. M. Li and W. J. Tyler, “Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound,” Nat. Protoc., vol. 6, no. 9, pp. 1453–1470, 2011, doi: 10.1038/nprot.2011.371.
[29] D. Omata, Y. Negishi, R. Suzuki, Y. Oda, Y. Endo-Takahashi and K. Maruyama, Nonviral Gene Delivery Systems by the Combination of Bubble Liposomes and Ultrasound, vol. 89. Elsevier Ltd, 2015.
[30] N. I. Vykhodtseva, K. Hynynen and C. Damianou, “Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo,” Ultrasound Med. Biol., vol. 21, no. 7, pp. 969–979, 1995, doi: 10.1016/0301-5629(95)00038-S.
[31] I. A. S. Elhelf, H. Albahar, U. Shah, A. Oto, E. Cressman and M. Almekkawy, “High intensity focused ultrasound: The fundamentals, clinical applications and research trends,” Diagn. Interv. Imaging, vol. 99, no. 6, pp. 349–359, 2018, doi: 10.1016/j.diii.2018.03.001.
[32] E. S. Ebbini and G. Ter-Haar, “Ultrasound-guided therapeutic focused ultrasound: Current status and future directions,” Int. J. Hyperth., vol. 31, no. 2, pp. 77–89, 2015, doi: 10.3109/02656736.2014.995238.
[33] Y. Tufail et al., “Transcranial pulsed ultrasound stimulates intact brain circuits,” Neuron, vol. 66, no. 5, pp. 681–694, 2010, doi: 10.1016/j.neuron.2010.05.008.
[34] D. J. Coleman et al., “Therapeutic ultrasound,” Ultrasound Med. Biol., vol. 12, no. 8, pp. 633–638, 1986, doi: 10.1016/0301-5629(86)90184-5.
[35] E. Rezayat and I. G. Toostani, “A review on brain stimulation using low intensity focused ultrasound,” Basic Clin. Neurosci., vol. 7, no. 3, pp. 187–194, 2016, doi: 10.15412/J.BCN.03070303.
[36] W. J. Fry, V. J. Wulff, D. Tucker, and F. J. Fry, “Physical factors involved in ultrasonically induced changes in living systems: I. Identification of Non-Temperature Effects,” J. Acoust. Soc. Am., vol. 22, no. 6, pp. 867–876, 1950, doi: 10.1121/1.1906707.
[37] W. J. Fry and H.W. Ades, “Production of reversible changes in the central nervous system by ultrasound.,” Science., vol. 127, Issue 3289, pp. 83-84., 1958, doi: 10.1126/science.127.3289.83.
[38] A. R. Crisci and A. L. Ferreira, “Low-intensity pulsed ultrasound accelerates the regeneration of the sciatic nerve after neurotomy in rats,” Ultrasound Med. Biol., vol. 28, no. 10, pp. 1335–1341, 2002, doi: 10.1016/S0301-5629(02)00576-8.
[39] Y. Hu, W. Zhong, J. M. F.Wan, and A. C. H. Yu, “Ultrasound can modulate neuronal development: impact on neurite growth and cell body morphology,” Ultrasound Med. Biol., vol. 39, no. 5, pp. 915–925, 2013, doi: 10.1016/j.ultrasmedbio.2012.12.003.
[40] X. Huang et al., “Transcranial low-intensity pulsed ultrasound modulates structural and functional synaptic plasticity in rat hippocampus,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 66, no. 5, pp. 930–938, 2019, doi: 10.1109/TUFFC.2019.2903896.
[41] C. Ren et al., “Low-intensity pulsed ultrasound promotes Schwann cell viability and proliferation via the GSK-3β/β-catenin signaling pathway,” Int. J. Biol. Sci., vol. 14, no. 5, pp. 497–507, 2018, doi: 10.7150/ijbs.22409.
[42] L. Zhao, Y. Feng, H. Hu, A. Shi, L. Zhang, and M. Wan, “Low-intensity pulsed ultrasound enhances nerve growth factor-induced neurite outgrowth through mechanotransduction-mediated ERK1/2–CREB–Trx-1 Signaling,” Ultrasound Med. Biol., vol. 42, no. 12, pp. 2914–2925, 2016, doi: 10.1016/j.ultrasmedbio.2016.07.017.
[43] W. Legon et al., “Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans,” Nat. Neurosci., vol. 17, no. 2, pp. 322–329, 2014, doi: 10.1038/nn.3620.
[44] S. H. Liu, Y. L. Lai, B. L. Chen, and F. Y. Yang, “Ultrasound enhances the expression of brain-derived neurotrophic factor in astrocyte through activation of trkb-akt and calcium-camk signaling pathways,” Cereb. Cortex, vol. 27, no. 6, pp. 3152–3160, 2017, doi: 10.1093/cercor/bhw169.
[45] Z. Qiu et al., “Targeted neurostimulation in mouse brains with non-invasive ultrasound,” Cell Rep., vol. 32, no. 7, p. 108033, 2020, doi: 10.1016/j.celrep.2020.108033.
[46] M. C. Kiernan et al., “Improving clinical trial outcomes in amyotrophic lateral sclerosis,” Nat. Rev. Neurol., doi: 10.1038/s41582-020-00434-z.
[47] A. Al-Chalabi et al., “July 2017 ENCALS statement on edaravone,” Amyotroph. Lateral Scler. Front. Degener., vol. 18, no. 7–8, pp. 471–474, 2017, doi: 10.1080/21678421.2017.1369125.
[48] B. J. Wainger et al., “Intrinsic membrane hyperexcitability of ALS patient-derived motor neurons,” Cell Rep., vol. 7, no. 1, pp. 1–11, 2014, doi: 10.1016/j.celrep.2014.03.019.Intrinsic.
[49] M. Ghadiri et al., “Dimethyl fumarate-induced lymphopenia in MS due to differential T-cell subset apoptosis,” Neurol. Neuroimmunol. NeuroInflammation, vol. 4, no. 3, 2017, doi: 10.1212/NXI.0000000000000340.
[50] C. H. Hsieh, C. H. Lu, Y. Y. Kuo, G. B.Lin, and C. Y. Chao, “The protective effect of non-invasive low intensity pulsed electric field and fucoidan in preventing oxidative stress-induced motor neuron death via ROCK/Akt pathway,” PLoS One, vol. 14, no. 3, pp. 1–19, 2019, doi: 10.1371/journal.pone.0214100.
[51] J. L. Goldberg and B. A. Barres, “The relationship between neuronal survival and regeneration,” Neurosci, vol. 2000, no. 23, pp. 579-612, pp. 801–822, doi: 10.1146/annurev.neuro.23.1.579 2002.
[52] “Mouse motor neuron (nsc-34) cell line maintenance catalogue #: CLU140,” Cat. # CLU140, pp. 288–289, 2016.
[53] O. Maier, J. Böhm, M. Dahm, S. Brück, C. Beyer and S. Johann, “Differentiated NSC-34 motoneuron-like cells as experimental model for cholinergic neurodegeneration,” Neurochem. Int., vol. 62, no. 8, pp. 1029–1038, 2013, doi: 10.1016/j.neuint.2013.03.008.
[54] T. Blocks, “Olympus sensor range.”
[55] R. Jones, “Cell spreading as a hydrodynamic process,” Bone, vol. 23, no. 1, pp. 1–7, 2014, doi: 10.1039/c0sm00252.Cell.
[56] S. Yoon, P. Wang, Q. Peng, Y. Wang and K. K. Shung, “Acoustic-transfection for genomic manipulation of single-cells using high frequency ultrasound,” Sci. Rep., vol. 7, no. 1, pp. 1–11, 2017, doi: 10.1038/s41598-017-05722-1.