簡易檢索 / 詳目顯示

研究生: 鄧仁傑
Teng, Jen-Chieh
論文名稱: 全雙工中繼協助之毫米波裝置間網路下節能中繼配對法及瓶頸效應消除之功率調整機制
Energy Efficient Relay Matching with Bottleneck Effect Elimination Power Adjusting for Full-Duplex Relay Assisted D2D Networks using mmWave Technology
指導教授: 張志文
Chang, Wenson
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 46
中文關鍵詞: 裝置間通訊毫米波能源效益全雙工中繼站
外文關鍵詞: D2D, mmWave, energy efficiency, full duplex relay, BEEPER
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第五代(5G)無線通訊系統中, 使用毫米波之裝置間通訊是一項極具前
    景及發展潛力的技術;其能夠以較大的頻寬及傳輸指向性大幅度的提升端對端之間的通道容量。然而,毫米波眾所皆知的高路徑衰退及阻斷問題嚴重限制了裝置間通訊的可達性。因此,中繼傳輸便成為了有效克服毫米波傳輸技術難題的必要解決方案。在本篇論文中,我們致力於提升全雙工中繼協助之毫米波裝置間通訊系統的能源效益。為了達到此目標,我們首先採用非線性分式規劃的迭代功率配置演算法進行能源效益的最佳化。再者,我們進一步提出了瓶頸效應消除之功率調配方法以期在維持端對端間通道容量的情況之下減少無謂的傳輸功率。結合迭代功率配置演算法、瓶頸效應消除之功率調配方法與適當的配對演算法,我們提出了能源效益中繼之瓶頸效應消除功率調配演算法。經由模擬結果之驗證,本篇論文所提出之方法確能有效提升全雙工中繼協助之毫米波裝置間通訊系統的能源效益。

    In the fifth-generation (5G) of the wireless communication systems, the millimeter wave (mmWave) based device-to-device (D2D) communication is a promising technique to boost the end-to-end capacity. However, the well-known blockage and high path loss problems of the mmWave severely restrict the reachability of the D2D communication. Therefore, the relaying transmission scheme becomes a necessary component to complete the puzzle of the technologies for 5G. In this thesis, we aim to boost the energy efficiency (EE) of the full duplex relay-aided mmWave D2D communications. To achieve this goal, the nonlinear fractional programming (NFP) based iterative power allocation (IPA) algorithm is firstly developed to optimize the EE. Then, on top of it, the bottle-neck effect elimination power (BEEP) adjusting method is proposed to further reduce the transmission power while maintaining the end-to-end capacity. By combining these techniques with properly designed matching algorithm, we propose the EE relaying with BEEP (BEEPER) algorithm. Via the simulation results, the superior performance of the BEEPER algorithm is verified.

    Chinese Abstract i English Abstract ii Acknowledgements iii Contents iv List of Tables vi List of Figures vii Glossary of Variables ix Glossary of Acronyms xii 1 Introduction 1 1.1 Problem Formulation and Solutions . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Background and Literature Survey 4 2.1 Device-to-Device Communications . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Power Control and Resource Allocation for D2D communications 5 2.2 Millimeter Wave Technology . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Relay-Assisted Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 The Karush-Kuhn-Tucker Condition [1] . . . . . . . . . . . . . . . . . . 13 2.5 The Lagrange Dual Problem [2] . . . . . . . . . . . . . . . . . . . . . . 15 2.5.1 The Lagrange Dual Function . . . . . . . . . . . . . . . . . . . . 16 2.5.2 Lower bounds on optimal value . . . . . . . . . . . . . . . . . . 16 3 System Model 18 3.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 BEEPER Algorithm 22 4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 BEEPER Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2.1 NFP-based IPA Algorithm . . . . . . . . . . . . . . . . . . . . . 23 4.2.2 EE Relay Matching . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.3 BEEP Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Simulation Results 30 5.1 Smooth Environment with α = 2 and σ = 6.56 dB . . . . . . . . . . . . 30 5.2 Harsh Environment with α = 2:5 and σ = 10 dB . . . . . . . . . . . . . 35 5.3 The Jain's Fairness Index . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Conclusions and Future Works 40 Bibliography 41 Appendix A The Procedures of IPA Algorithm 45

    [1] E. K. Chong and S. H. Zak, "An introduction to optimization, third edition," in Wiley-Interscience series in discrete mathematics and optimization, 2011.
    [2] S. Boyd and L. Vandenberghe, "Convex optimization," in Cambridge, UK: Cambridge University Press, 2004.
    [3] Z. Qingling and J. Li, "Rain attenuation in millimeter wave ranges," in 7th International Symposium on Antennas, Propagation and EM Theory, Oct. 2006, pp.
    1-4.
    [4] T. S. Rappaport, J. N. Murdock, , and F. Gutierrez, "State of the art in 60 ghz integrated circuits and systems for wireless communications," Proc. IEEE, vol. 99, no. 8, pp. 1390-1436, Aug. 2011.
    [5] T. S. Rappaport, E. Ben-Dor, J. N. Murdock, and Y. Qiao, "38 ghz and 60 ghz angle-dependent propagation for cellular and peer-to-peer wireless communications," in IEEE International Conference on Communications, Nov. 2012, pp. 4568-4573.
    [6] J. Qiao, X. S. Shen, J. W. Mark, Q. Shen, Y. He, and L. Lei, "Enabling device-to-device communications in millimeter-wave 5G cellular networks," IEEE Communications Magazine, vol. 53, no. 1, pp. 209-215, Jan. 2015.
    [7] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!" IEEE Access, vol. 1, pp. 335-349, May 2013.
    [8] Z. Wei, X. Zhu, S. Sun, Y. Huang, A. Al-Tahmeesschi, and Y. Jiang, "Energy efficiency of millimeter-wave full-duplex relaying systems: Challenges and solutions," IEEE Access, vol. 4, pp. 4848-4860, Sep. 2016.
    [9] J. Kim, S. Yun, S. H. Jeon, A.-S. Park, and J. K. Choi, "Energy-efficient user relaying scheme in metropolitan mmWave mobile broadband system," in IEEE 25th Annual International Symposium on Personal, Indoor and Mobile Radio Communication, 2014, pp. 1305-1309.
    [10] B. Ma, H. Shah-Mansouri, and V. W. S. Wong, "A matching approach for power efficient relay selection in full duplex D2D networks," in IEEE International Con-
    ference on Communications, Jul. 2016, pp. 1-6.
    [11] Z. Zhou, K. Ota, M. Dong, and C. Xu, "Energy-efficient matching for resource allocation in D2D enabled cellular networks," IEEE Transactions on Vehicular
    Technology, vol. 66, no. 6, pp. 5256-5268, June 2017.
    [12] P. Phunchongharn, E. Hossain, and D. I. Kim, "Resource allocation for device-to-device
    communications underlaying lte-advanced networks," IEEE Wireless Communications, vol. 20, no. 4, pp. 91-100, Aug. 2013.
    [13] D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, G. Feng, and S. Li, "Device-to-device communications underlaying cellular networks," IEEE Transactions on Communications, vol. 61, no. 8, pp. 3451-3551, Aug. 2013.
    [14] T. D. Hoang, L. B. Le, and T. Le-Ngoc, "Radio resource management for optimizing energy efficiency of d2d communications in cellular networks," in IEEE 26th Annual International Symposium on Personal and Indoor and Mobile Radio Communications, Dec. 2015, pp. 1190-1194.
    [15] W. Chang, Y.-T. Jau, S.-L. Su, and Y. Lee, "Gale-Shapley-algorithm based resource allocation scheme for device-to-device communications underlaying downlink
    cellular networks," in IEEE Wireless Communications and Networking Conference, Sep. 2016, pp. 1-6.
    [16] X. Cai, J. Zheng, and Y. Zhang, "A graph-coloring based resource allocation algorithm for d2d communication in cellular networks," in IEEE International Conference on Communications, Sept. 2015, pp. 5429-5434.
    [17] Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, vol. 49, no. 6, pp. 101-107, June 2011.
    [18] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, "Device-to-device communication in 5g cellular networks: challenges, solutions, and future directions," IEEE
    Communications Magazine, vol. 52, no. 5, pp. 86-92, May 2014.
    [19] X. Qin, H. Zeng, X. Yuan, B. Jalaian, Y. T. Hou, and Wenjing, "Impact of full duplex scheduling on end-to-end throughput in multi-hop wireless networks," IEEE Transactions on Mobile Computing, vol. 16, no. 1, pp. 158-171, Jan. 2017.
    [20] Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, "Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay
    selection," IEEE Communications Magazine, vol. 53, no. 5, pp. 128-137, May 2015.
    [21] M. Zhao, X. Gu, D. Wu, and L. Ren, "A two-stages relay selection and resource allocation joint method for d2d communication system," in IEEE Wireless Communications and Networking Conference, Sept. 2016, pp. 1-6.
    [22] M. Oiwa, C. Tosa, and S. Sugiura, "Theoretical analysis of hybrid buffer-aided cooperative protocol based on max-max and max-link relay selections," IEEE Transactions on Vehicular Technology, vol. 65, no. 11, pp. 9236-9246, Nov. 2016.
    [23] P. Li, S. Guo, Z. Cheng, and A. V. Vasilakos, "Joint relay assignment and channel allocation for energy-efficient cooperative communications," in IEEE Wireless
    Communications and Networking Conference, Jul. 2013, pp. 626-630.
    [24] G. Yang, J. Du, and M. Xiao, "Maximum throughput path selection with random blockage for indoor 60 GHz relay networks," IEEE Transactions on Communications, vol. 63, no. 10, pp. 3511-3524, Oct. 2015.
    [25] W. U. Rehman, T. Salam, and X. Tao, "Receiver based distributed relay selection scheme for 60-ghz networks," in IEEE 25th Annual International Symposium on Personal, Indoor and Mobile Radio Communication, 2014, pp. 1585-1590.
    [26] S. Biswas, S. Vuppala, J. Xue, and T. Ratnarajah, "An analysis on relay assisted millimeter wave networks," in IEEE International Conference on Communications, 2016, pp. 1-6.
    [27] B. Xie, Z. Zhang, and R. Q. Hu, "Performance study on relay-assisted millimeter wave cellular networks," in IEEE 83rd Vehicular Technology Conference, 2016, pp. 1-5.
    [28] N. Eshraghi, B. Maham, and V. Shah-Mansouri, "Millimeter-wave device-to-device multi-hop routing for multimedia applications," in IEEE International Conference on Communications, Jul. 2016, pp. 1-6.
    [29] T. S. Rappaport, F. Gutierrez, E. Ben-Dor, and J. N. Murdock, "Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications," IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1850-1859, Apr. 2013.
    [30] T. Bai and R. W. Heath, "Coverage and rate analysis for millimeter-wave cellular networks," IEEE Transactions on Wireless Communications, vol. 14, no. 2, pp. 1100-1114, Feb. 2015.
    [31] W. Dinkelbach, "On nonlinear fractional programming," Management Science, vol. 13, no. 7, pp. 492-498, Mar. 1967.
    [32] S. Bayat, Y. Li, L. Song, and Z. Han, "Matching theory: Applications in wireless communications," IEEE Signal Processing Magazine, vol. 33, no. 6, pp. 103-122,
    Nov. 2016.
    [33] K. T. K. Cheung, S. Yang, and L. Hanzo, "Achieving maximum energy-efficiency in multi-relay ofdma cellular networks: a fractional programming approach," IEEE
    Transactions on Communications, vol. 61, no. 8, pp. 2746-2757, Jul. 2013.

    無法下載圖示 校內:2022-07-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE