| 研究生: |
王昭文 Chao-Wen-Wang, |
|---|---|
| 論文名稱: |
以熱裂解氣象層析質譜分析焙燒對生質物之熱裂解影響 Effect of torrefaction pretreatment on the pyrolysis of biomass analyzed by Py-GC/MS |
| 指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 木聚醣 、木質素 、纖維素 、橡膠木 、焙燒 、熱裂解 、生質油 、熱重分析 、熱裂解氣象層析質譜分析 、雙重熱裂解模式。 |
| 外文關鍵詞: | Hemicellulose, xylan, lignin, cellulose, Pyrolysis, Torrefaction, Bio-oil, Thermogravimetric analysis (TGA), Py-GC/MS, Double-shot reaction. |
| 相關次數: | 點閱:148 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了研究生質物於焙燒前處理後之熱裂解特性與機制,於本研究的第一部分使用熱裂解氣象層析質譜(Py-GC/MS)進行測試與分析生質物的三大基本組成物質:半纖維素(木聚醣)、纖維素、木質素,其熱裂解特性與焙燒前處理後熱裂解特性。第二部分探討橡膠木的基本特性:熱重分析、元素分析、纖維分析、近似分析、熱值分析,並且延伸第一部分的研究測試基礎,探討焙燒前處理之熱裂解橡膠木影響。
第一部分是利用熱裂解氣象層析質譜研究半纖維素,纖維素和木質素的熱降解特性。為了瞭解生質物在焙燒,熱裂解及焙燒前處理對熱裂解的影響,分別使用單階段和兩階段連續反應的技術進行。分析表明,半纖維素中所含的O-acetyl和pentose在焙燒過程中熱降解為acetic acid和furfural,因此在焙燒後的半纖維素進行熱裂解所產生的acetic acid和furfural的含量明顯降低。由於纖維素中的晶體結構,焙燒對纖維素的影響不明顯。當熱解溫度高於300℃時,纖維素開始分解並形成有機揮發性產物,並且熱解產物包括由單體單元之間的β-O-4糖苷鍵斷裂引起的各種脫水糖類的產生(主要產物為levoglucosan)。來自木質素焙燒的產物並不明顯,木質素的熱降解產物主要產出在400和500℃的熱解溫度下。在300℃焙燒對木質素的熱解具有顯著影響,並且烘焙過的木質素在熱裂解下芳香族化合物的產量會增加。
第二部分調查以橡膠木作為裂解的生質原料,研究橡膠木的基本特性(熱重分析、元素分析、纖維分析、近似分析、熱值分析),探討橡膠木作為生質料應用於熱裂解的潛力。以第一部分研究為基礎,使用熱重分析儀(TG)以及熱裂解氣象層析質譜(pyrolysis–gas chromatography/mass spectrometry)進行橡膠木屑分析。透過熱裂解氣象層析質譜分析。焙燒溫度為200, 250和300 °C,時間為10分鐘,並將焙燒過後的橡膠木進行高溫熱裂解反應,裂解溫度為500 °C。橡膠木屑的熱裂解產物分佈結果顯示:在焙燒300°C下,半纖維素及木質素會進行降解,產生的主要產物為酯類、醛類以及酚類。經焙燒前處理過後,富氧化合物 (酸類、醛類) 減少,而碳水化合物增加。
With the depletion of fossil fuels and the growing concern for environmental protection, utilization of biomass resources has attracted increasing worldwide interest. To investigate the characteristics of biomass thermal degradation, the torrefaction pretreatment effect on pyrolysis of the three main biomass components (hemicellulose, lignin, cellulose) and rubber wood sawdust are tested and analyzed in the present study, which are divided into two parts. In the first part, the thermal degradation of three basic constituents in biomass is examined by use of Py-GC/MS, with a particular focus on the temperature dependence and production of different compounds. In the second part aimed to examine the effects of different torrefaction pretreatment temperatures on rubber wood sawdust pyrolysis characteristics.
The aim of the first study is to investigate the thermal degradation charcteristics of hemicellulose, cellulose, and lignin using pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). To characterize the decompostion behaviors, torrefaction, pyrolysis, and their combination of the three constitutentsa are performed using a single-stage reaction and a double-shot technique, with emphasis on the influence of torrefaction on pyrolysis. The analysis suggests O-acetyl and pentose units contained in hemicellulose are thermally degraded into acetic acid and furfural in torrefaction, so the contents of acetic acid and furfural decrease significantly in the pyrolysis of torrefied hemicellulose. On account of the crystalline structure in the cellulose, the impact of torrefaction upon the cellulose is insignificant. The cellulose starts to decompose and form organic volatile products as the pyrolysis temperature is higher than 300 °C, and the pyrolytic products included various anhydrosugars (dominated by the levoglucosan) from the breakage of β-O-4 glycosidic bond between the monomer units. The products from the torrefaction of the lignin are not obvious, and they become remarkable at the pyrolysis temperatures of 400 and 500 °C, resulting from the depolymerization of the lignin. The torrefaction at 300 °C has a significant influence on the pyrolysis of the lignin, and the pyrolysis of the torrefied lignin results in an increase in the amount of aromatic compounds.
The aim of the second part research is to investigate the effect of torrefaction on the pyrolysis of rubber wood sawdust (RWS) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Three typical torrefaction temperatures (200, 250, and 300 °C) and pyrolysis temperatures (450, 500, and 550 °C) are considered. The results suggest that only diethyl phthalate, belonging to esters, is detected at the torrefaction temperatures of 200 and 250 °C, revealing hemicellulose degradation. With the torrefaction temperature of 300 °C, esters, aldehydes, and phenols are detected, suggesting the predominant decomposition of hemicellulose and lignin. The double-shot pyrolysis indicate that the contents of oxy-compounds such as acids and aldehydes in pyrolysis bio-oil decreased with rising torrefaction temperature, implying that increasing torrefaction severity abated oxygen content in the bio-oil. With the torrefaction temperature of 300 °C, relatively more cellulose is retained in the biomass because the carbohydrate content in the pyrolysis bio-oil increases significantly.
[1] G. Kumar, S. Shobana, W.-H. Chen, Q.-V. Bach, S.-H. Kim, A. Atabani, et al. A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chemistry. 19 (2017) 44-67.
[2] A. Kržan, E. Žagar. Microwave driven wood liquefaction with glycols. Bioresource Technology. 100 (2009) 3143-6.
[3] W.-H. Chen, H.-C. Hsu, K.-M. Lu, W.-J. Lee, T.-C. Lin. Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy. 36 (2011) 3012-21.
[4] T. Kan, V. Strezov, T.J. Evans. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews. 57 (2016) 1126-40.
[5] A.V. Bridgwater. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy. 38 (2012) 68-94.
[6] W.-H. Chen, B.-J. Lin. Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres. Energy. 94 (2016) 569-78.
[7] Y. Chen, W. Cao, A. Atreya. An experimental study to investigate the effect of torrefaction temperature and time on pyrolysis of centimeter-scale pine wood particles. Fuel Processing Technology. 153 (2016) 74-80.
[8] D. Chen, Z. Zheng, K. Fu, Z. Zeng, J. Wang, M. Lu. Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products. Fuel. 159 (2015) 27-32.
[9] A. Zheng, Z. Zhao, Z. Huang, K. Zhao, G. Wei, X. Wang, et al. Catalytic Fast Pyrolysis of Biomass Pretreated by Torrefaction with Varying Severity. Energy & Fuels. 28 (2014) 5804-11.
[10] T. Wigley, A.C.K. Yip, S. Pang. Pretreating biomass via demineralisation and torrefaction to improve the quality of crude pyrolysis oil. Energy. 109 (2016) 481-94.
[11] Q. Lu, X.-c. Yang, C.-q. Dong, Z.-f. Zhang, X.-m. Zhang, X.-f. Zhu. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis. 92 (2011) 430-8.
[12] N. Gao, A. Li, C. Quan, L. Du, Y. Duan. TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. Journal of Analytical and Applied Pyrolysis. 100 (2013) 26-32.
[13] G. Kumar, S. Shobana, W.-H. Chen, Q.-V. Bach, S.-H. Kim, A.E. Atabani, et al. A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chem. 19 (2017) 44-67.
[14] S. Zhang, B. Hu, L. Zhang, Y. Xiong. Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon. Journal of Analytical and Applied Pyrolysis. 119 (2016) 217-23.
[15] G. Jiang, D.J. Nowakowski, A.V. Bridgwater. Effect of the Temperature on the Composition of Lignin Pyrolysis Products. Energy & Fuels. 24 (2010) 4470-5.
[16] T. Ohra-aho, J. Linnekoski. Catalytic pyrolysis of lignin by using analytical pyrolysis-GC–MS. Journal of Analytical and Applied Pyrolysis. 113 (2015) 186-92.
[17] D.K. Shen, S. Gu. The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol. 100 (2009) 6496-504.
[18] I. Aarum, H. Devle, D. Ekeberg, S.J. Horn, Y. Stenstrøm. The effect of flash pyrolysis temperature on compositional variability of pyrolyzates from birch lignin. Journal of Analytical and Applied Pyrolysis. 127 (2017) 211-22.
[19] B.M.E. Chagas, C. Dorado, M.J. Serapiglia, C.A. Mullen, A.A. Boateng, M.A.F. Melo, et al. Catalytic pyrolysis-GC/MS of Spirulina: Evaluation of a highly proteinaceous biomass source for production of fuels and chemicals. Fuel. 179 (2016) 124-34.
[20] X. Gu, X. Ma, L. Li, C. Liu, K. Cheng, Z. Li. Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS. Journal of Analytical and Applied Pyrolysis. 102 (2013) 16-23.
[21] S. Zhang, Q. Dong, L. Zhang, Y. Xiong. Effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk through TGA and Py-GC/MS. Bioresour Technol. 199 (2016) 352-61.
[22] Z. Yang, M. Sarkar, A. Kumar, J.S. Tumuluru, R.L. Huhnke. Effects of torrefaction and densification on switchgrass pyrolysis products. Bioresour Technol. 174 (2014) 266-73.
[23] D.S. Naidu, S.P. Hlangothi, M.J. John. Bio-based products from xylan: A review. Carbohydr Polym. 179 (2018) 28-41.
[24] H. Zhou, Y. Long, A. Meng, S. Chen, Q. Li, Y. Zhang. A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. Rsc Advances. 5 (2015) 26509-16.
[25] S. Wu, D. Shen, J. Hu, R. Xiao, H. Zhang. TG-FTIR and Py-GC–MS analysis of a model compound of cellulose – glyceraldehyde. Journal of Analytical and Applied Pyrolysis. 101 (2013) 79-85.
[26] J. Zhao, W. Xiuwen, J. Hu, Q. Liu, D. Shen, R. Xiao. Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polymer Degradation and Stability. 108 (2014) 133-8.
[27] Q.V. Bach, W.H. Chen. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresour Technol. 246 (2017) 88-100.
[28] J.-J. Lu, W.-H. Chen. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy. 160 (2015) 49-57.
[29] Z. Wang, R. Ma, W. Song. Influence of HSAPO-34, HZSM-5, and NaY on pyrolysis of corn straw fermentation residue via Py-GC/MS. Journal of Analytical and Applied Pyrolysis. 122 (2016) 183-90.
[30] W.-H. Chen, P.-C. Kuo. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy. 35 (2010) 2580-6.
[31] W.-H. Chen, P.-C. Kuo. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy. 36 (2011) 803-11.
[32] J.-G. Lee, C.-G. Lee, J.-J. Kwag, A.J. Buglass, G.-H. Lee. Determination of optimum conditions for the analysis of volatile components in pine needles by double-shot pyrolysis–gas chromatography–mass spectrometry. Journal of Chromatography A. 1089 (2005) 227-34.
[33] W.-H. Chen, Y.-J. Tu, H.-K. Sheen. Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. International Journal of Energy Research. 34 (2010) 265-74.
[34] F.-X. Collard, J. Blin. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews. 38 (2014) 594-608.
[35] Y. Peng, S. Wu. The structural and thermal characteristics of wheat straw hemicellulose. Journal of Analytical and Applied Pyrolysis. 88 (2010) 134-9.
[36] D.K. Shen, S. Gu, A.V. Bridgwater. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. Journal of Analytical and Applied Pyrolysis. 87 (2010) 199-206.
[37] S.D. Stefanidis, K.G. Kalogiannis, E.F. Iliopoulou, C.M. Michailof, P.A. Pilavachi, A.A. Lappas. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis. 105 (2014) 143-50.
[38] C. Quan, N. Gao, Q. Song. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization. Journal of Analytical and Applied Pyrolysis. 121 (2016) 84-92.
[39] Z. Ma, Q. Sun, J. Ye, Q. Yao, C. Zhao. Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS. Journal of Analytical and Applied Pyrolysis. 117 (2016) 116-24.
[40] A. Tejado, C. Pena, J. Labidi, J.M. Echeverria, I. Mondragon. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol. 98 (2007) 1655-63.
[41] D. Watkins, M. Nuruddin, M. Hosur, A. Tcherbi-Narteh, S. Jeelani. Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology. 4 (2015) 26-32.
[42] C. Zhao, E. Jiang, A. Chen. Volatile production from pyrolysis of cellulose, hemicellulose and lignin. Journal of the Energy Institute. (2016).
[43] A. Zheng, L. Jiang, Z. Zhao, Z. Huang, K. Zhao, G. Wei, et al. Impact of Torrefaction on the Chemical Structure and Catalytic Fast Pyrolysis Behavior of Hemicellulose, Lignin, and Cellulose. Energy & Fuels. 29 (2015) 8027-34.
[44] S. Wang, B. Ru, H. Lin, W. Sun. Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods. Fuel. 150 (2015) 243-51.
[45] D. Fabbri, C. Torri, B.R.T. Simoneit, L. Marynowski, A.I. Rushdi, M.J. Fabiańska. Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmospheric Environment. 43 (2009) 2286-95.
[46] S. Wu, D. Shen, J. Hu, H. Zhang, R. Xiao. Role of β -O-4 glycosidic bond on thermal degradation of cellulose. Journal of Analytical and Applied Pyrolysis. 119 (2016) 147-56.
[47] M. Balat. Mechanisms of Thermochemical Biomass Conversion Processes. Part 1: Reactions of Pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 30 (2008) 620-35.
[48] M. Wang, C. Liu, X. Xu, Q. Li. Theoretical study of the pyrolysis of vanillin as a model of secondary lignin pyrolysis. Chemical Physics Letters. 654 (2016) 41-5.
[49] E.A. Boakye. Lignin Transformation and Characterization of Pyrolytic Products. Chemistry and Biochemistry Department, South Dakota State University2017.
[50] H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86 (2007) 1781-8.
[51] A. Shariff, R. Hakim, N. Abdullah. Rubber-Wood-as-a-Potential-Biomass-Feedstock-for-Biochar-via-Slow Pyrolysis. Journal Article. 120 (2016) 1415-20.
[52] W.-H. Chen, J. Peng, X.T. Bi. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews. 44 (2015) 847-66.
[53] M.G. Grønli, G. Várhegyi, C. Di Blasi. Thermogravimetric Analysis and Devolatilization Kinetics of Wood. Industrial & Engineering Chemistry Research. 41 (2002) 4201-8.
[54] W.-H. Chen, Y.-S. Chu, W.-J. Lee. Influence of bio-solution pretreatment on the structure, reactivity and torrefaction of bamboo. Energy Conversion and Management. 141 (2017) 244-53.
[55] H.F. Wenzel. The Chemical Technology of Wood. Academic Press. (1970) 32–245.
[56] C. Liu, J. Hu, H. Zhang, R. Xiao. Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors. Fuel. 182 (2016) 864-70.
[57] M.E. Arias, O. Polvillo, J. Rodríguez, M. Hernández, J.A. González-Pérez, F.J. González-Vila. Thermal transformations of pine wood components under pyrolysis/gas chromatography/mass spectrometry conditions. Journal of Analytical and Applied Pyrolysis. 77 (2006) 63-7.
[58] S. Wang, G. Dai, B. Ru, Y. Zhao, X. Wang, G. Xiao, et al. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy. 120 (2017) 864-71.
[59] C. Font Palma. Modelling of tar formation and evolution for biomass gasification: A review. Applied Energy. 111 (2013) 129-41.
[60] P. Rousset, C. Lapierre, B. Pollet, W. Quirino, P. Perre. Effect of severe thermal treatment on spruce and beech wood lignins. Annals of Forest Science. 66 (2009) 110-.
[61] D. Gogoi, N. Bordoloi, R. Goswami, R. Narzari, R. Saikia, D. Sut, et al. Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: An agro-processing wastes. Bioresour Technol. 242 (2017) 36-