| 研究生: | 王靖媛 Wang, Ching-Yuan | 
|---|---|
| 論文名稱: | 發展及驗證骨骼發育異常基因檢測平台 Development and validation of target-sequencing panel for skeletal dysplasia | 
| 指導教授: | 孫孝芳 Sun, H. Sunny | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 醫學院 - 分子醫學研究所 Institute of Molecular Medicine | 
| 論文出版年: | 2019 | 
| 畢業學年度: | 107 | 
| 語文別: | 英文 | 
| 論文頁數: | 82 | 
| 中文關鍵詞: | 精準醫療 、骨發育不全 、擴增子型標靶定序 、非侵入性產前檢測 | 
| 外文關鍵詞: | Precision medicine, Skeletal dysplasia, Amplicon-based target sequencing, noninvasive prenatal testing (NIPT) | 
| 相關次數: | 點閱:48 下載:0 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
非致死性骨骼發育不全與致死性骨骼發育不全是常見的新生兒遺傳性疾病。其中,非致死性骨骼發育不全的發生率為1/4,000~5,000,致死性骨骼發育不全的發生率為0.95/10,000。FGFR2、FGFR3、COL1A1、COL1A2以及COL2A1基因若發生序列變異,則為已知造成非致死性以及致死性骨骼發育不全的原因。針對骨骼發育不全,目前使用的傳統基因檢測,為一次鑑定不同的基因或是外顯子的序列變異,因此,傳統的檢驗方法在臨床應用上是十分耗費金錢以及時間。隨著精準醫療逐漸被重視,偵測嚴重的遺傳性疾病,是需要以一種快速及價格合理的方法完成檢測。幸運的是,次世代定序在人類基因體計畫完成後成功發展,並且結合生資分析後,能夠達到以非侵入性的方法進行基因檢測,能夠在產前時期就偵測出遺傳性且具危害性的序列變異。在本篇研究中,我們目標是建立一個針對分布於5個常見影響骨發育不全基因的87個變異位點所設計的目標基因定序平台。首先,我們分析14個家庭的原始定序資料。在生資分析的結果中,能夠確認原始資料能夠符合我們所設定的標準,有80%的讀數是在目標區域,也有85%的位點的讀數會到達至少20%的平均深度的讀數。另外,在這14個家庭中,我們能夠在游離DNA中偵測到大約是4%的變異比例,並且推估在游離DNA中,胎兒的游離比例DNA為8%左右。此外,我們也能夠以1ng的游離DNA來執行文庫的製備,並且得到精確的變異位點判斷結果。另一方面,我們使用陽性檢體混合正常檢體模擬游離DNA狀態,以確認此平台的序列變異比率檢測最低限制。從數據中顯示,此平台能夠在給予總讀數為80萬的情況下,正確偵測出模擬2.5%游離DNA的位點變異,並且達到變異熱點的讀數能夠得到深度為50以上。此平台的敏感度及特異度皆為100%,此平台變異位點的敏感度及特異度分別為100%以及99.91%。最後,本研究的最終目的就是能夠將這個平台廣泛應用於臨床檢測,已達到產前預防及幫助治療策略的選擇。
Non-lethal and lethal skeletal dysplasia are common inherited neonatal disorders which the disease frequencies are approximately 1/4,000~5,000 and 0.95/10,000, respectively. Sequence mutations in the FGFR2, FGFR3, COL1A1, COL1A2 and COL2A1 are known to cause non-lethal or lethal skeletal dysplasia. Traditional genetic screening of skeletal dysplasia was costly and time-consuming due to multiple-genes and -exons for mutation identification. With precision medicine initiative, a fast and yet cost-effective approach is needed to avoid the inheritance of severe disease. Fortunately, the advance of next-generation sequencing (NGS) technology, together with the bioinformatics analysis have been applied to noninvasive prenatal testing (NIPT) to detect the inherited and deleterious mutations in the fetal at the prenatal stage. In this study, we have established an amplicon-based target sequencing panel that covers 87 hotspots in 5 genes. At first, we tested the performance on 14 families. Results from bioinformatics analysis showed that the panel meets the criteria nicely. On average, an on-target rate of more than 80 % and a uniformity of more than 85 % were obtained. The performance data from 14 families showed that we can accurately call the paternal variant at ~8% of fetal DNA in the plasma and as little as 1 ng cell free DNA for library preparation was sufficient to gain reliable results. In addition, the test limit was assayed by spiking-in test and the results showed that while the total reads are about 0.8M, we can call the FGFR3 (c.1138G>A) variant at ~2.5 % of positive sample fraction in the pooling sample. Furthermore, a hotspots depth more than 4000x and alternative allele reads more than 50 were obtained. The sensitivity and the specificity of the panel are both 100% and of the variants calling are 99.91% and 100%, respectively. The ultimate goal of current research is to apply the skeletal dysplasia target-screening panel in the prenatal diagnosis to provide the best prevention and treatment strategies.
References
Anderson, J., H. D. Burns, P. Enriquez-Harris, A. O. Wilkie, and J. K. Heath. 1998. 'Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand', Hum Mol Genet, 7: 1475-83.
Argente, J., and G. A. Martos Moreno. 2016. '[Skeletal dysplasias: New medical treatments]', An Pediatr (Barc), 85: 1-3.
Arnaud-Lopez, L., R. Fragoso, J. Mantilla-Capacho, and P. Barros-Nunez. 2007. 'Crouzon with acanthosis nigricans. Further delineation of the syndrome', Clin Genet, 72: 405-10.
Baldwin, C. T., C. D. Constantinou, K. W. Dumars, and D. J. Prockop. 1989. 'A single base mutation that converts glycine 907 of the alpha 2(I) chain of type I procollagen to aspartate in a lethal variant of osteogenesis imperfecta. The single amino acid substitution near the carboxyl terminus destabilizes the whole triple helix', J Biol Chem, 264: 3002-6.
Barat-Houari, M., G. Sarrabay, V. Gatinois, A. Fabre, B. Dumont, D. Genevieve, and I. Touitou. 2016. 'Mutation Update for COL2A1 Gene Variants Associated with Type II Collagenopathies', Hum Mutat, 37: 7-15.
Bateman, J. F., D. Chan, I. D. Walker, J. G. Rogers, and W. G. Cole. 1987. 'Lethal perinatal osteogenesis imperfecta due to the substitution of arginine for glycine at residue 391 of the alpha 1(I) chain of type I collagen', J Biol Chem, 262: 7021-7.
Bonaventure, J., L. Cohen-Solal, C. Lasselin, and P. Maroteaux. 1992. 'A dominant mutation in the COL1A1 gene that substitutes glycine for valine causes recurrent lethal osteogenesis imperfecta', Hum Genet, 89: 640-6.
Byers, P. H., M. Duvic, M. Atkinson, M. Robinow, L. T. Smith, S. M. Krane, M. T. Greally, M. Ludman, R. Matalon, S. Pauker, D. Quanbeck, and U. Schwarze. 1997. 'Ehlers-Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen', Am J Med Genet, 72: 94-105.
Cabral, W. A., E. J. Chernoff, and J. C. Marini. 2001. 'G76E substitution in type I collagen is the first nonlethal glutamic acid substitution in the alpha1(I) chain and alters folding of the N-terminal end of the helix', Mol Genet Metab, 72: 326-35.
Chan, D., W. G. Cole, C. W. Chow, S. Mundlos, and J. F. Bateman. 1995. 'A COL2A1 mutation in achondrogenesis type II results in the replacement of type II collagen by type I and III collagens in cartilage', J Biol Chem, 270: 1747-53.
Cole, W. G., C. W. Chow, J. F. Bateman, and D. O. Sillence. 1996. 'The phenotypic features of osteogenesis imperfecta resulting from a mutation of the carboxyl-terminal pro alpha 1 (I) propeptide that impairs the assembly of type I procollagen and formation of the extracellular matrix', J Med Genet, 33: 965-7.
Cole, W. G., E. Patterson, J. Bonadio, P. E. Campbell, and D. W. Fortune. 1992. 'The clinicopathological features of three babies with osteogenesis imperfecta resulting from the substitution of glycine by valine in the pro alpha 1 (I) chain of type I procollagen', J Med Genet, 29: 112-8.
De Paepe, A., L. Nuytinck, M. Raes, and J. P. Fryns. 1997. 'Homozygosity by descent for a COL1A2 mutation in two sibs with severe osteogenesis imperfecta and mild clinical expression in the heterozygotes', Hum Genet, 99: 478-83.
Deak, S. B., P. M. Scholz, P. S. Amenta, C. D. Constantinou, S. A. Levi-Minzi, L. Gonzalez-Lavin, and J. W. Mackenzie. 1991. 'The substitution of arginine for glycine 85 of the alpha 1(I) procollagen chain results in mild osteogenesis imperfecta. The mutation provides direct evidence for three discrete domains of cooperative melting of intact type I collagen', J Biol Chem, 266: 21827-32.
Deng, H., X. Huang, and L. Yuan. 2016. 'Molecular genetics of the COL2A1-related disorders', Mutat Res Rev Mutat Res, 768: 1-13.
Edwards, M. J., R. J. Wenstrup, P. H. Byers, and D. H. Cohn. 1992. 'Recurrence of lethal osteogenesis imperfecta due to parental mosaicism for a mutation in the COL1A2 gene of type I collagen. The mosaic parent exhibits phenotypic features of a mild form of the disease', Hum Mutat, 1: 47-54.
Faivre, L., M. Le Merrer, S. Douvier, N. Laurent, C. Thauvin-Robinet, T. Rousseau, I. Vereecke, P. Sagot, A. L. Delezoide, P. Coucke, and G. Mortier. 2004. 'Recurrence of achondrogenesis type II within the same family: evidence for germline mosaicism', Am J Med Genet A, 126A: 308-12.
Faqeih, E., P. Roughley, F. H. Glorieux, and F. Rauch. 2009. 'Osteogenesis imperfecta type III with intracranial hemorrhage and brachydactyly associated with mutations in exon 49 of COL1A2', Am J Med Genet A, 149A: 461-5.
Fernandes, M. B., L. P. Maximino, G. B. Perosa, D. V. Abramides, M. R. Passos-Bueno, and A. Yacubian-Fernandes. 2016. 'Apert and Crouzon syndromes-Cognitive development, brain abnormalities, and molecular aspects', Am J Med Genet A, 170: 1532-7.
Forlino, A., D. R. Keene, K. Schmidt, and J. C. Marini. 1998. 'An alpha2(I) glycine to aspartate substitution is responsible for the presence of a kink in type I collagen in a lethal case of osteogenesis imperfecta', Matrix Biol, 17: 575-84.
Friez, M. J., and J. A. Wilson. 2008. 'Novel FGFR3 mutations in exon 7 and implications for expanded screening of achondroplasia and hypochondroplasia: a response to Heuertz et al', Eur J Hum Genet, 16: 277-8.
Genomes Project, Consortium, G. R. Abecasis, D. Altshuler, A. Auton, L. D. Brooks, R. M. Durbin, R. A. Gibbs, M. E. Hurles, and G. A. McVean. 2010. 'A map of human genome variation from population-scale sequencing', Nature, 467: 1061-73.
Genomes Project, Consortium, A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison, H. M. Kang, J. O. Korbel, J. L. Marchini, S. McCarthy, G. A. McVean, and G. R. Abecasis. 2015. 'A global reference for human genetic variation', Nature, 526: 68-74.
Goodwin, S., J. D. McPherson, and W. R. McCombie. 2016. 'Coming of age: ten years of next-generation sequencing technologies', Nat Rev Genet, 17: 333-51.
Goriely, A., R. M. Hansen, I. B. Taylor, I. A. Olesen, G. K. Jacobsen, S. J. McGowan, S. P. Pfeifer, G. A. McVean, E. Rajpert-De Meyts, and A. O. Wilkie. 2009. 'Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors', Nat Genet, 41: 1247-52.
Gorry, M. C., R. A. Preston, G. J. White, Y. Zhang, V. K. Singhal, H. W. Losken, M. G. Parker, N. A. Nwokoro, J. C. Post, and G. D. Ehrlich. 1995. 'Crouzon syndrome: mutations in two spliceoforms of FGFR2 and a common point mutation shared with Jackson-Weiss syndrome', Hum Mol Genet, 4: 1387-90.
He, L., N. Shobnam, W. C. Wimley, and K. Hristova. 2011. 'FGFR3 heterodimerization in achondroplasia, the most common form of human dwarfism', J Biol Chem, 286: 13272-81.
Ho Duy, B., L. Zhytnik, K. Maasalu, I. Kandla, E. Prans, E. Reimann, A. Martson, and S. Koks. 2016. 'Mutation analysis of the COL1A1 and COL1A2 genes in Vietnamese patients with osteogenesis imperfecta', Hum Genomics, 10: 27.
Hu, H., H. Liu, C. Peng, T. Deng, X. Fu, C. Chung, E. Zhang, C. Lu, K. Zhang, Z. Liang, and Y. Yang. 2016. 'Clinical Experience of Non-Invasive Prenatal Chromosomal Aneuploidy Testing in 190,277 Patient Samples', Curr Mol Med, 16: 759-66.
Hu, P., D. Liang, Y. Chen, Y. Lin, F. Qiao, H. Li, T. Wang, C. Peng, D. Luo, H. Liu, and Z. Xu. 2019. 'An enrichment method to increase cell-free fetal DNA fraction and significantly reduce false negatives and test failures for non-invasive prenatal screening: a feasibility study', J Transl Med, 17: 124.
Huang, W., Y. A. Guo, K. Muthukumar, P. Baruah, M. M. Chang, and A. J. Skanderup. 2019. 'SMuRF: Portable and accurate ensemble prediction of somatic mutations', Bioinformatics.
Jiang, P., and Y. M. D. Lo. 2016. 'The Long and Short of Circulating Cell-Free DNA and the Ins and Outs of Molecular Diagnostics', Trends Genet, 32: 360-71.
Ke, R., X. Yang, M. Ge, T. Cai, J. Lei, and X. Mu. 2015. 'S267P mutation in FGFR2: first report in a patient with Crouzon syndrome', J Craniofac Surg, 26: 592-4.
Ke, R., X. Yang, C. Tianyi, M. Ge, J. Lei, and X. Mu. 2015. 'The C342R mutation in FGFR2 causes Crouzon syndrome with elbow deformity', J Craniofac Surg, 26: 584-6.
Korkko, J., H. Kuivaniemi, P. Paassilta, J. Zhuang, G. Tromp, A. DePaepe, D. J. Prockop, and L. Ala-Kokko. 1997. 'Two new recurrent nucleotide mutations in the COL1A1 gene in four patients with osteogenesis imperfecta: about one-fifth are recurrent', Hum Mutat, 9: 148-56.
Krakow, D. 2015. 'Skeletal dysplasias', Clin Perinatol, 42: 301-19, viii.
Krakow, D., R. S. Lachman, and D. L. Rimoin. 2009. 'Guidelines for the prenatal diagnosis of fetal skeletal dysplasias', Genet Med, 11: 127-33.
Lajeunie, E., R. Cameron, V. El Ghouzzi, N. de Parseval, P. Journeau, M. Gonzales, A. L. Delezoide, J. Bonaventure, M. Le Merrer, and D. Renier. 1999. 'Clinical variability in patients with Apert's syndrome', J Neurosurg, 90: 443-7.
Lamande, S. R., H. H. Dahl, W. G. Cole, and J. F. Bateman. 1989. 'Characterization of point mutations in the collagen COL1A1 and COL1A2 genes causing lethal perinatal osteogenesis imperfecta', J Biol Chem, 264: 15809-12.
Liu, L., Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, and M. Law. 2012. 'Comparison of next-generation sequencing systems', J Biomed Biotechnol, 2012: 251364.
Lo, Y. M., N. Corbetta, P. F. Chamberlain, V. Rai, I. L. Sargent, C. W. Redman, and J. S. Wainscoat. 1997. 'Presence of fetal DNA in maternal plasma and serum', Lancet, 350: 485-7.
Lund, A. M., F. Skovby, and M. Schwartz. 1997. '(G586V) substitutions in the alpha 1 and alpha 2 chains of collagen I: effect of alpha-chain stoichiometry on the phenotype of osteogenesis imperfecta?', Hum Mutat, 9: 431-6.
Mackay, K., A. M. Lund, M. Raghunath, B. Steinmann, and R. Dalgleish. 1993. 'SSCP detection of a Gly565Val substitution in the pro alpha 1(I) collagen chain resulting in osteogenesis imperfecta type II', Hum Genet, 91: 439-44.
Makareeva, E., W. A. Cabral, J. C. Marini, and S. Leikin. 2006. 'Molecular mechanism of alpha 1(I)-osteogenesis imperfecta/Ehlers-Danlos syndrome: unfolding of an N-anchor domain at the N-terminal end of the type I collagen triple helix', J Biol Chem, 281: 6463-70.
Malfait, F., S. Symoens, N. Goemans, Y. Gyftodimou, E. Holmberg, V. Lopez-Gonzalez, G. Mortier, S. Nampoothiri, M. B. Petersen, and A. De Paepe. 2013. 'Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an Osteogenesis Imperfecta/Ehlers-Danlos Syndrome overlap syndrome', Orphanet J Rare Dis, 8: 78.
Marini, J. C., M. B. Lewis, and K. Chen. 1993. 'Moderately severe osteogenesis imperfecta associated with substitutions of serine for glycine in the alpha 1(I) chain of type I collagen', Am J Med Genet, 45: 241-5.
Mayer, S. A., B. S. Rubin, B. J. Starman, and P. H. Byers. 1996. 'Spontaneous multivessel cervical artery dissection in a patient with a substitution of alanine for glycine (G13A) in the alpha 1 (I) chain of type I collagen', Neurology, 47: 552-6.
McCullough, R. M., E. A. Almasri, X. Guan, J. A. Geis, S. C. Hicks, A. R. Mazloom, C. Deciu, P. Oeth, A. T. Bombard, B. Paxton, N. Dharajiya, and J. S. Saldivar. 2014. 'Non-invasive prenatal chromosomal aneuploidy testing--clinical experience: 100,000 clinical samples', PLoS One, 9: e109173.
McGillivray, G., R. Savarirayan, T. C. Cox, C. Stojkoski, R. McNeil, A. Bankier, J. F. Bateman, T. Roscioli, R. J. Gardner, and S. R. Lamande. 2005. 'Familial scaphocephaly syndrome caused by a novel mutation in the FGFR2 tyrosine kinase domain', J Med Genet, 42: 656-62.
Mottes, M., M. M. Gomez Lira, M. Valli, G. Scarano, F. Lonardo, A. Forlino, G. Cetta, and P. F. Pignatti. 1993. 'Paternal mosaicism for a COL1A1 dominant mutation (alpha 1 Ser-415) causes recurrent osteogenesis imperfecta', Hum Mutat, 2: 196-204.
Mottes, M., A. Sangalli, M. Valli, M. Gomez Lira, R. Tenni, P. Buttitta, P. F. Pignatti, and G. Cetta. 1992. 'Mild dominant osteogenesis imperfecta with intrafamilial variability: the cause is a serine for glycine alpha 1(I) 901 substitution in a type-I collagen gene', Hum Genet, 89: 480-4.
Nicholls, A. C., J. Oliver, D. V. Renouf, M. Keston, and F. M. Pope. 1991. 'Substitution of cysteine for glycine at residue 415 of one allele of the alpha 1(I) chain of type I procollagen in type III/IV osteogenesis imperfecta', J Med Genet, 28: 757-64.
Niyibizi, C., J. Bonadio, P. H. Byers, and D. R. Eyre. 1992. 'Incorporation of type I collagen molecules that contain a mutant alpha 2(I) chain (Gly580-->Asp) into bone matrix in a lethal case of osteogenesis imperfecta', J Biol Chem, 267: 23108-12.
Nuytinck, L., R. Dalgleish, L. Spotila, J. P. Renard, N. Van Regemorter, and A. De Paepe. 1996. 'Substitution of glycine-661 by serine in the alpha1(I) and alpha2(I) chains of type I collagen results in different clinical and biochemical phenotypes', Hum Genet, 97: 324-9.
Nuytinck, L., T. Tukel, H. Kayserili, M. Y. Apak, and A. De Paepe. 2000. 'Glycine to tryptophan substitution in type I collagen in a patient with OI type III: a unique collagen mutation', J Med Genet, 37: 371-5.
Ohishi, A., G. Nishimura, F. Kato, H. Ono, K. Maruwaka, M. Ago, H. Suzumura, E. Hirose, Y. Uchida, M. Fukami, and T. Ogata. 2017. 'Mutation analysis of FGFR1-3 in 11 Japanese patients with syndromic craniosynostoses', Am J Med Genet A, 173: 157-62.
Oldridge, M., P. W. Lunt, E. H. Zackai, D. M. McDonald-McGinn, M. Muenke, D. M. Moloney, S. R. Twigg, J. K. Heath, T. D. Howard, G. Hoganson, D. M. Gagnon, E. W. Jabs, and A. O. Wilkie. 1997. 'Genotype-phenotype correlation for nucleotide substitutions in the IgII-IgIII linker of FGFR2', Hum Mol Genet, 6: 137-43.
Pack, M., C. D. Constantinou, K. Kalia, K. B. Nielsen, and D. J. Prockop. 1989. 'Substitution of serine for alpha 1(I)-glycine 844 in a severe variant of osteogenesis imperfecta minimally destabilizes the triple helix of type I procollagen. The effects of glycine substitutions on thermal stability are either position of amino acid specific', J Biol Chem, 264: 19694-9.
Pagon, R. A. 2006. 'GeneTests: an online genetic information resource for health care providers', J Med Libr Assoc, 94: 343-8.
Pannier, S., J. Martinovic, S. Heuertz, A. L. Delezoide, A. Munnich, L. Schibler, V. Serre, and L. Legeai-Mallet. 2009. 'Thanatophoric dysplasia caused by double missense FGFR3 mutations', Am J Med Genet A, 149A: 1296-301.
Park, W. J., G. A. Meyers, X. Li, C. Theda, D. Day, S. J. Orlow, M. C. Jones, and E. W. Jabs. 1995. 'Novel FGFR2 mutations in Crouzon and Jackson-Weiss syndromes show allelic heterogeneity and phenotypic variability', Hum Mol Genet, 4: 1229-33.
Passos-Bueno, M. R., A. L. Sertie, A. Richieri-Costa, L. G. Alonso, M. Zatz, N. Alonso, D. Brunoni, and S. F. Ribeiro. 1998. 'Description of a new mutation and characterization of FGFR1, FGFR2, and FGFR3 mutations among Brazilian patients with syndromic craniosynostoses', Am J Med Genet, 78: 237-41.
Patterson, E., E. Smiley, and J. Bonadio. 1989. 'RNA sequence analysis of a perinatal lethal osteogenesis imperfecta mutation', J Biol Chem, 264: 10083-7.
Paumard-Hernandez, B., J. Berges-Soria, E. Barroso, C. I. Rivera-Pedroza, V. Perez-Carrizosa, S. Benito-Sanz, E. Lopez-Messa, F. Santos, Recuero Garcia, II, A. Romance, J. M. Ballesta-Martinez, V. Lopez-Gonzalez, A. Campos-Barros, J. Cruz, E. Guillen-Navarro, J. Sanchez Del Pozo, P. Lapunzina, S. Garcia-Minaur, and K. E. Heath. 2015. 'Expanding the mutation spectrum in 182 Spanish probands with craniosynostosis: identification and characterization of novel TCF12 variants', Eur J Hum Genet, 23: 907-14.
Petersen, B. S., B. Fredrich, M. P. Hoeppner, D. Ellinghaus, and A. Franke. 2017. 'Opportunities and challenges of whole-genome and -exome sequencing', BMC Genet, 18: 14.
Pihlajaniemi, T., L. A. Dickson, F. M. Pope, V. R. Korhonen, A. Nicholls, D. J. Prockop, and J. C. Myers. 1984. 'Osteogenesis imperfecta: cloning of a pro-alpha 2(I) collagen gene with a frameshift mutation', J Biol Chem, 259: 12941-4.
Platt, J., R. Cox, and G. M. Enns. 2014. 'Points to consider in the clinical use of NGS panels for mitochondrial disease: an analysis of gene inclusion and consent forms', J Genet Couns, 23: 594-603.
Polla, D. L., M. T. Cardoso, M. C. Silva, I. C. Cardoso, C. T. Medina, R. Araujo, C. C. Fernandes, A. M. Reis, R. V. de Andrade, R. W. Pereira, and R. Pogue. 2015. 'Use of Targeted Exome Sequencing for Molecular Diagnosis of Skeletal Disorders', PLoS One, 10: e0138314.
Raghunath, M., B. Steinmann, C. Delozier-Blanchet, P. Extermann, and A. Superti-Furga. 1994. 'Prenatal diagnosis of collagen disorders by direct biochemical analysis of chorionic villus biopsies', Pediatr Res, 36: 441-8.
Reardon, W., R. M. Winter, P. Rutland, L. J. Pulleyn, B. M. Jones, and S. Malcolm. 1994. 'Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome', Nat Genet, 8: 98-103.
Richards, S., N. Aziz, S. Bale, D. Bick, S. Das, J. Gastier-Foster, W. W. Grody, M. Hegde, E. Lyon, E. Spector, K. Voelkerding, H. L. Rehm, and Acmg Laboratory Quality Assurance Committee. 2015. 'Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology', Genet Med, 17: 405-24.
Roscioli, T., G. Elakis, T. C. Cox, D. J. Moon, H. Venselaar, A. M. Turner, T. Le, E. Hackett, E. Haan, A. Colley, D. Mowat, L. Worgan, E. P. Kirk, R. Sachdev, E. Thompson, M. Gabbett, J. McGaughran, K. Gibson, M. Gattas, M. L. Freckmann, J. Dixon, L. Hoefsloot, M. Field, A. Hackett, B. Kamien, M. Edwards, L. C. Ades, F. A. Collins, M. J. Wilson, R. Savarirayan, T. Y. Tan, D. J. Amor, G. McGillivray, S. M. White, I. A. Glass, D. J. David, P. J. Anderson, M. Gianoutsos, and M. F. Buckley. 2013. 'Genotype and clinical care correlations in craniosynostosis: findings from a cohort of 630 Australian and New Zealand patients', Am J Med Genet C Semin Med Genet, 163C: 259-70.
Rose, N. J., K. Mackay, P. H. Byers, and R. Dalgleish. 1994. 'A Gly859Ser substitution in the triple helical domain of the alpha 2 chain of type I collagen resulting in osteogenesis imperfecta type III in two unrelated individuals', Hum Mutat, 3: 391-4.
Rose, N. J., K. Mackay, A. De Paepe, B. Steinmann, H. H. Punnett, and R. Dalgleish. 1994. 'Three unrelated individuals with perinatally lethal osteogenesis imperfecta resulting from identical Gly502Ser substitutions in the alpha 2-chain of type I collagen', Hum Genet, 94: 497-503.
Rutland, P., L. J. Pulleyn, W. Reardon, M. Baraitser, R. Hayward, B. Jones, S. Malcolm, R. M. Winter, M. Oldridge, S. F. Slaney, and et al. 1995. 'Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes', Nat Genet, 9: 173-6.
Samorodnitsky, E., B. M. Jewell, R. Hagopian, J. Miya, M. R. Wing, E. Lyon, S. Damodaran, D. Bhatt, J. W. Reeser, J. Datta, and S. Roychowdhury. 2015. 'Evaluation of Hybridization Capture Versus Amplicon-Based Methods for Whole-Exome Sequencing', Hum Mutat, 36: 903-14.
Santani, A., J. Murrell, B. Funke, Z. Yu, M. Hegde, R. Mao, A. Ferreira-Gonzalez, K. V. Voelkerding, and K. E. Weck. 2017. 'Development and Validation of Targeted Next-Generation Sequencing Panels for Detection of Germline Variants in Inherited Diseases', Arch Pathol Lab Med, 141: 787-97.
Sargar, K. M., A. K. Singh, and S. C. Kao. 2017. 'Imaging of Skeletal Disorders Caused by Fibroblast Growth Factor Receptor Gene Mutations', Radiographics, 37: 1813-30.
Shapiro, J. R., M. L. Stover, V. E. Burn, M. B. McKinstry, A. L. Burshell, S. D. Chipman, and D. W. Rowe. 1992. 'An osteopenic nonfracture syndrome with features of mild osteogenesis imperfecta associated with the substitution of a cysteine for glycine at triple helix position 43 in the pro alpha 1(I) chain of type I collagen', J Clin Invest, 89: 567-73.
Srinivasan, A., D. W. Bianchi, H. Huang, A. J. Sehnert, and R. P. Rava. 2013. 'Noninvasive detection of fetal subchromosome abnormalities via deep sequencing of maternal plasma', Am J Hum Genet, 92: 167-76.
Starman, B. J., D. Eyre, H. Charbonneau, M. Harrylock, M. A. Weis, L. Weiss, J. M. Graham, Jr., and P. H. Byers. 1989. 'Osteogenesis imperfecta. The position of substitution for glycine by cysteine in the triple helical domain of the pro alpha 1(I) chains of type I collagen determines the clinical phenotype', J Clin Invest, 84: 1206-14.
Steinberger, D., H. Collmann, B. Schmalenberger, and U. Muller. 1997. 'A novel mutation (a886g) in exon 5 of FGFR2 in members of a family with Crouzon phenotype and plagiocephaly', J Med Genet, 34: 420-2.
Sudmant, P. H., T. Rausch, E. J. Gardner, R. E. Handsaker, A. Abyzov, J. Huddleston, Y. Zhang, K. Ye, G. Jun, M. H. Fritz, M. K. Konkel, A. Malhotra, A. M. Stutz, X. Shi, F. P. Casale, J. Chen, F. Hormozdiari, G. Dayama, K. Chen, M. Malig, M. J. P. Chaisson, K. Walter, S. Meiers, S. Kashin, E. Garrison, A. Auton, H. Y. K. Lam, X. J. Mu, C. Alkan, D. Antaki, T. Bae, E. Cerveira, P. Chines, Z. Chong, L. Clarke, E. Dal, L. Ding, S. Emery, X. Fan, M. Gujral, F. Kahveci, J. M. Kidd, Y. Kong, E. W. Lameijer, S. McCarthy, P. Flicek, R. A. Gibbs, G. Marth, C. E. Mason, A. Menelaou, D. M. Muzny, B. J. Nelson, A. Noor, N. F. Parrish, M. Pendleton, A. Quitadamo, B. Raeder, E. E. Schadt, M. Romanovitch, A. Schlattl, R. Sebra, A. A. Shabalin, A. Untergasser, J. A. Walker, M. Wang, F. Yu, C. Zhang, J. Zhang, X. Zheng-Bradley, W. Zhou, T. Zichner, J. Sebat, M. A. Batzer, S. A. McCarroll, Consortium Genomes Project, R. E. Mills, M. B. Gerstein, A. Bashir, O. Stegle, S. E. Devine, C. Lee, E. E. Eichler, and J. O. Korbel. 2015. 'An integrated map of structural variation in 2,504 human genomes', Nature, 526: 75-81.
Takagi, M., N. Hori, Y. Chinen, K. Kurosawa, Y. Tanaka, K. Oku, H. Sakata, R. Fukuzawa, G. Nishimura, J. Spranger, and T. Hasegawa. 2011. 'Heterozygous C-propeptide mutations in COL1A1: osteogenesis imperfecta type IIC and dense bone variant', Am J Med Genet A, 155A: 2269-73.
Tartaglia, M., S. Valeri, F. Velardi, C. Di Rocco, and P. A. Battaglia. 1997. 'Trp290Cys mutation in exon IIIa of the fibroblast growth factor receptor 2 (FGFR2) gene is associated with Pfeiffer syndrome', Hum Genet, 99: 602-6.
Teven, C. M., E. M. Farina, J. Rivas, and R. R. Reid. 2014. 'Fibroblast growth factor (FGF) signaling in development and skeletal diseases', Genes Dis, 1: 199-213.
Tsuneyoshi, T., A. Westerhausen, C. D. Constantinou, and D. J. Prockop. 1991. 'Substitutions for glycine alpha 1-637 and glycine alpha 2-694 of type I procollagen in lethal osteogenesis imperfecta. The conformational strain on the triple helix introduced by a glycine substitution can be transmitted along the helix', J Biol Chem, 266: 15608-13.
van Dijk, F. S., J. M. Cobben, A. Kariminejad, A. Maugeri, P. G. Nikkels, R. R. van Rijn, and G. Pals. 2011. 'Osteogenesis Imperfecta: A Review with Clinical Examples', Mol Syndromol, 2: 1-20.
Wallis, G. A., B. J. Starman, A. B. Zinn, and P. H. Byers. 1990. 'Variable expression of osteogenesis imperfecta in a nuclear family is explained by somatic mosaicism for a lethal point mutation in the alpha 1(I) gene (COL1A1) of type I collagen in a parent', Am J Hum Genet, 46: 1034-40.
Wenstrup, R. J., D. H. Cohn, T. Cohen, and P. H. Byers. 1988. 'Arginine for glycine substitution in the triple-helical domain of the products of one alpha 2(I) collagen allele (COL1A2) produces the osteogenesis imperfecta type IV phenotype', J Biol Chem, 263: 7734-40.
Wenstrup, R. J., L. W. Lever, C. L. Phillips, and L. D. Quarles. 1993. 'Mutations in the COL1A2 gene of type I collagen that result in nonlethal forms of osteogenesis imperfecta', Am J Med Genet, 45: 228-32.
Willing, M. C., D. H. Cohn, and P. H. Byers. 1990. 'Frameshift mutation near the 3' end of the COL1A1 gene of type I collagen predicts an elongated Pro alpha 1(I) chain and results in osteogenesis imperfecta type I', J Clin Invest, 85: 282-90.
Xue, Y., A. Sun, P. B. Mekikian, J. Martin, D. L. Rimoin, R. S. Lachman, and W. R. Wilcox. 2014. 'FGFR3 mutation frequency in 324 cases from the International Skeletal Dysplasia Registry', Mol Genet Genomic Med, 2: 497-503.
Yang, Y., D. M. Muzny, J. G. Reid, M. N. Bainbridge, A. Willis, P. A. Ward, A. Braxton, J. Beuten, F. Xia, Z. Niu, M. Hardison, R. Person, M. R. Bekheirnia, M. S. Leduc, A. Kirby, P. Pham, J. Scull, M. Wang, Y. Ding, S. E. Plon, J. R. Lupski, A. L. Beaudet, R. A. Gibbs, and C. M. Eng. 2013. 'Clinical whole-exome sequencing for the diagnosis of mendelian disorders', N Engl J Med, 369: 1502-11.
Yeo, Z. X., J. C. Wong, S. G. Rozen, and A. S. Lee. 2014. 'Evaluation and optimisation of indel detection workflows for ion torrent sequencing of the BRCA1 and BRCA2 genes', BMC Genomics, 15: 516.
Yohe, S., and B. Thyagarajan. 2017. 'Review of Clinical Next-Generation Sequencing', Arch Pathol Lab Med, 141: 1544-57.
Zankl, A., G. Elakis, R. D. Susman, G. Inglis, G. Gardener, M. F. Buckley, and T. Roscioli. 2008. 'Prenatal and postnatal presentation of severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) due to the FGFR3 Lys650Met mutation', Am J Med Genet A, 146A: 212-8.
Zankl, A., G. Jaeger, L. Bonafe, E. Boltshauser, and A. Superti-Furga. 2004. 'Novel mutation in the tyrosine kinase domain of FGFR2 in a patient with Pfeiffer syndrome', Am J Med Genet A, 131: 299-300.
Zhang, J., J. Li, J. B. Saucier, Y. Feng, Y. Jiang, J. Sinson, A. K. McCombs, E. S. Schmitt, S. Peacock, S. Chen, H. Dai, X. Ge, G. Wang, C. A. Shaw, H. Mei, A. Breman, F. Xia, Y. Yang, A. Purgason, A. Pourpak, Z. Chen, X. Wang, Y. Wang, S. Kulkarni, K. W. Choy, R. J. Wapner, I. B. Van den Veyver, A. Beaudet, S. Parmar, L. J. Wong, and C. M. Eng. 2019. 'Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA', Nat Med, 25: 439-47.
Zhuang, J. P., C. D. Constantinou, A. Ganguly, and D. J. Prockop. 1991. 'A single base mutation in type I procollagen (COL1A1) that converts glycine alpha 1-541 to aspartate in a lethal variant of osteogenesis imperfecta: detection of the mutation with a carbodiimide reaction of DNA heteroduplexes and direct sequencing of products of the PCR', Am J Hum Genet, 48: 1186-91.
Zhuang, J., G. Tromp, H. Kuivaniemi, S. Castells, and D. J. Prockop. 1996. 'Substitution of arginine for glycine at position 154 of the alpha 1 chain of type I collagen in a variant of osteogenesis imperfecta: comparison to previous cases with the same mutation', Am J Med Genet, 61: 111-16.