簡易檢索 / 詳目顯示

研究生: 劉瀚聰
Liou, Han-Tsung
論文名稱: 交通路網車輛偵測器佈設策略與旅次起迄量推估之整合架構
An Integrated Framework for the Determination of Vehicle Sensor Deployment Strategy and Vehicular Trip Origin-Destination Matrix
指導教授: 胡守任
Hu, Shou-Ren
學位類別: 博士
Doctor
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 152
中文關鍵詞: 旅次起迄矩陣智慧型運輸系統異質性交通偵測器偵測器佈設問題
外文關鍵詞: origin-destination (O-D) matrix, intelligent transportation systems (ITS), heterogeneous traffic sensors, sensor deployment problem
相關次數: 點閱:111下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 運輸路網的旅次起迄(Origin-Destination, O-D)需求量(以下簡稱O-D旅次量)是運輸科學的重要元素之一,以運輸需求為基礎所構成的O-D旅次量矩陣可以描述車輛在特定運輸路網的時空分佈,同時反映路網的負荷情況。在過去四十年的相關研究主要利用易收集的路段流量或路徑流量估計法(Path Flow Estimator, PFE),以進行運輸路網O-D旅次量之估計。該做法可以有效克服傳統O-D旅次量調查方法所衍生的缺點,包括:耗時、費力、抽樣誤差等問題,因而廣泛且持續受到重視與研究。此外,由於資訊和通訊技術(Information Communication Technologies, ICTs)的快速發展,相關技術應用於智慧型運輸系統(Intelligent Transportation Systems, ITS)的各項工作日漸普遍。因此,路段流量不再是推估O-D旅次量的唯一資料來源,透過若干先進式車輛偵測設施的研發與應用,以異質性交通資料於運輸路網O-D旅次需求量的推估,不僅逐漸具成本效益,同時可以有效改善O-D旅次量的估計結果。
    然而,實務上運輸路網管理單位在考量交通偵測器佈設計畫時,通常面臨預算限制的問題,因而無法全面性的進行車輛偵測器的佈設。因此,如何策略性的決定異質性車輛偵測器佈設計畫,並有效的結合應用於運輸路網O-D旅次量之推估,為一重要的研究課題。本研究主要的目的在於研擬一整合型決策模式架構,包括:異質性偵測器佈設模式與運輸路網O-D旅次量推估模式,在有限的車輛偵測器預算限制之下,求解異質性偵測器佈設策略與對應的O-D旅次量矩陣之估計量。本研究所提出的整合型架構,對於實務上進行運輸路網管理與偵測設施佈設決策,具重要的參考價值與政策意涵。

    A trip origin-destination (O-D) matrix in a vehicular network is one of the important components in network sciences, and this information provides vehicular spatiotemporal patterns to describe traffic loading situations in a given network. In the past four decades, estimating network O-D matrices from relatively easily collected link flows and path flows has been developed and studied to overcome the problems associated with traditional network O-D matrix survey approaches, including time consuming, labor intensive and sampling errors in the survey process. Because of the rapid development of information and communication technologies (ICTs), advanced technologies in sensor surveillance have been widely used in intelligent transportation systems (ITS) related applications. Hence, traffic information obtained from heterogeneous sensors including link and path flows as input data for the network O-D matrix estimation gradually becomes cost-effective and has its potential for improving estimation performance.
    However, in practice, highway management agencies always face a budgetary constraint issue related to implementing a sensor deployment plan, and a full-scale sensor deployment strategy is usually not available. As a result, how to strategically deploy heterogeneous traffic sensors for the purpose of vehicular tip O-D matrix estimation becomes essential in transportation network sciences. The main purpose of this research is to develop an integrated model framework consisting of a heterogeneous sensor deployment strategy and vehicular trip O-D matrix estimation under a budgetary constraint. The proposed integrated framework can efficiently provide desirable solutions in terms of an acceptable level of accuracy of network O-D estimated matrix estimate and has an implication for strategic sensor deployment strategy.

    誌謝 I 摘要 III ABSTRACT IV TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Research Scope 3 1.3 Research Objective 4 1.4 Methodology 5 1.5 Outline 5 CHAPTER 2 LITERATURE REVIEW 7 2.1 Network O-D Matrix Estimation 7 2.1.1 Generalized least squares estimator (GLS) 9 2.1.2 Maximum Likelihood (ML) Estimator 10 2.1.3 Entropy Maximizing (EM) Estimator 11 2.1.4 Information Minimization (IM) Estimator 13 2.1.5 The Kalman Filter (K-F) Algorithm 15 2.1.6 The Bayesian Inference Approach 16 2.1.7 Other Related Network O-D Matrix Estimation Methods 17 2.1.8 Network O-D matrix Estimation from Different Resources 17 2.2 Intersection Turning Proportions Estimation 18 2.3 Path Flow Estimation (PFE) 20 2.4 Network Sensor Location Problem (NSLP) 21 2.4.1 Graph Theory for the NSLP 21 2.4.2 Algebraic Approach for the NSLP 22 2.4.3 Mathematical Optimization Approach for the NSLP 24 2.5 NSLP-OD/HSDP-OD Problems 29 2.5 Traffic Sensor Technologies 43 2.5.1 Sensor Types for Traffic Data Collection 43 2.5.2 Location of Traffic Sensors 46 2.5.3 Measurement of Traffic Sensors 46 2.5.4 Classification of Traffic Sensors 46 2.5.5 Summary of Traffic Sensor Technologies 47 2.6 Summary of the Literature Review 50 CHAPTER 3 MODEL FORMULATION 54 3.1 Notations 55 3.2 Sequential HSDP-OD model 57 3.2.1 HSDP Model Formulation in the Sequential Framework 60 3.2.2 Information Transformation Layer in the Sequential Framework 73 3.2.3 O-D Matrix Estimation Model Formulation in the Sequential Framework 74 3.2.4 Model Performance Measures 76 3.2.5 Solution Procedure for the Sequential HSDP-OD model 77 3.3 Two-stage HSDP-OD model 79 3.3.1 HSDP Model Formulation in the Two-stage Framework 82 3.3.2 O-D Matrix Estimation Model Formulation in the Two-stage Framework 86 3.3.3 Feedback Mechanism of Iterative Update 88 3.3.4 Solution Procedure for the Two-stage HSDP-OD model 90 3.4 Summary of the HSDP-OD Models 94 CHAPTER 4 NUMERICAL ANALYSIS 96 4.1 Numerical Analysis for the Sequential HSDP-OD Model 96 4.1.1 Hypothetical Network: Fishbone Network 97 4.1.2 Simplified Real Network: National Cheng Kung University (NCKU) Network 100 4.2 Interactive Effect between HSDP and O-D Models 107 4.2.1 Fishbone network without budget constraints in different installed locations 108 4.2.2 Fishbone network with budget constraints in different installed locations 110 4.2.3 Discussions 111 4.3 Numerical Analysis for the Two-stage HSDP-OD Model 112 4.3.1 Hypothetical Network: Fishbone Network 112 4.3.2 Simplified Real Network: Sanmin Network 115 4.3.3 Discussion of the Two-stage HSDP-OD Model 119 4.3.4 Comparisons Between Sequential and Two-stage HSDP-OD Models 121 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 124 5.1 Conclusions 124 5.1.1 Conclusions about the Integrated Framework for the HSDP-OD Problem 124 5.1.2 Conclusions about the HSDP Models 125 5.1.3 Conclusions about the O-D Matrix Estimation Models 126 5.2 Findings of the Research 126 5.3 Limitations of the Research 129 5.4 Recommendations 129 LIST OF REFERENCES 131 APPENDICES 141 Appendix A: Upper Bound of the Number of Traffic Sensors 141 A.1 Upper Bound of the Equipped Passive-type Sensors 141 A.2 Upper Bound of the Equipped Active-type Sensors 143 Appendix B: Bound of the HSDP Model 145 B.1 Lower Bound of the Required Sensors from the Set Covering Constraint 145 B.2 Upper Bound of the Available Sensors from the Budget Constraint 146 VITA 148

    1. Adebisi, O. 1987. Improving Manual Counts of Turning Traffic Volumes at Road Junctions. Journal of Transportation Engineering. 113(3). 256-267.
    2. Ahuja, R. K., Magnanti, T. L., and Orlin, J. R. 1993. Network Flows: Theory, Algorithms and Applications. New Jersey: Prentice Hall.
    3. Ashok, K., and Ben-Akiva, M. E. 2002. Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows. Transportation Science. 36(2). 184-198.
    4. Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. 1993. Nonlinear Programming: Theory and Algorithms. 2nd Edition, New York: John Wiley and Sons Inc.
    5. Bell, M. G. H. 1984. The Estimation of Junction Turning Volumes from Traffic Counts: The Role of Prior Information. Traffic Engineering and Control. 25(5). 279-283.
    6. Bertsekas, D. P. 1995. Nonlinear Programming, Massachusetts: Athena Scientific.
    7. Bertsekas, D. P. 1996. Constrained Optimization and Lagrange Multiplier Methods. Massachusetts: Athena Scientific.
    8. Bianco, L., Cofessore, G., and Reverberi, P. 2001. A Network Based Model for Traffic Sensor Location with Implications on O/D Matrix Estimates. Transportation Science. 35(1). 50-60.
    9. Bell, M. G. H. 1984. The Estimation of Junction Turning Volumes from Traffic Counts: The Role of Prior Information. Traffic Engineering and Control. 25(5). 279-283.
    10. Bell, M. G. H., Shield, C. M., Bush, F., and Kruse, G. 1997. A stochastic User Equilibrium Path Flow Estimator. Transportation Research-C. 5(3-4). 197-210.
    11. Bell, M. G. H., and Grosso, S. 1998. The Path Estimator as a Network Observer. Traffic Engineering and Control. 39(10). 540-549.
    12. Ben-Israel, A., and Greville, T. N. E. 2003. Generalized Inverses: Theory and Applications, Springer, New York.
    13. Buehler, M. G.1983. Forecasting Intersection Traffic Volumes. Journal of Transportation Engineering. 109(4). 519-533.
    14. Casetta, E. 1984. Estimation of Trip Matrices from Traffic Counts and Survey Data: A Generalized Least Squares Estimator. Transportation Research-B. 18(4-5). 289-299.
    15. Casetta, E., and Nguyen, S. 1988. A unified Framework for Estimating or Updating Origin/Destination Matrices from Traffic Counts. Transportation Research-B. 22(6). 437-455.
    16. Castillo, E., Conejo, A. J., Pruneda, R. E., and Solares, C. 2007. Observability in Linear Systems of Equations and Inequalities: Applications. Computer and Operations Research. 34(6). 1708-1720.
    17. Castillo, E., Conejo, A. J., Menendez, J. M., and Jimenez, P. 2008a. The Observability Problem in Traffic Network Models. Computer-Aided Civil and Infrastructure Engineering. 23(3). 208-222.
    18. Castillo, E., Jimenez, P., Menendez, J. M., and Conejo, A. J. 2008b. The Observability Problem in Traffic Models: Algebraic and Topological Methods. IEEE Transactions on Intelligent Transportation Systems. 9(2). 275-287.
    19. Castillo, E., Menendez, J. M., and Sanchez-Cambronero, S. 2008c. Traffic Estimation and Optimal Counting Location without Path Enumeration Using Bayesian Network. Computer-Aid Civil and Infrastructure Engineering. 23(3). 189-207.
    20. Castillo, E., Menendez, J. M., and Jimenez, P. 2008d. Trip Matrix and Path Flow Reconstruction and Estimation Based on Plate Scanning and Link Observations. Transportation Research-B. 42(5). 455-481.
    21. Castillo, E., Calviño, A., Menéndez, J. M., Jiménez, P., and Rivas, A. 2013. Deriving the Upper Bound of the Number of Sensors Required to Know All Link Flows in a Traffic Network. IEEE Transactions on Intelligent Transportation Systems. 14(2). 761-771.
    22. Chang, G. L., and Wu, J. 1994. Recursive Estimation of Time-varying Origin-Destination Flows from Traffic Counts in Freeway Corridors. Transportation Research-B. 28(2) 141-160.
    23. Chang, G. L., and Tao, X. 1998. Estimation of Time-Dependent Turning Fractions at Signalized Intersections. Transportation Research Record. 1644. 142-149
    24. Chan, K. S., and Lam, W. H. K. 2002. Optimal Speed Detector Density for the Network with Travel Time Information. Transportation Research-A. 36(3). 203-223.
    25. Chen, A., Chootinan, P., and Pravinvongvuth, S. 2004. Multiobjective Model for Locating Automatic Vehicle Identification Readers. Journal of the Transportation Research Board. 1886, 49-58.
    26. Chen, A., Chootinan, P., Ryu, S., Lee, M., and Recker, W. W. 2012. An Intersection Turning Movement Estimation Procedure based on Path Flow Estimator. Journal of Advanced Transportation. 46(2). 161-176.
    27. Chen, D. S., Batson, R. G., and Dang, Y. 2009. Applied Integer Programming: Modeling and Solution, New Jersey: John Wiley and Sons, Inc.
    28. Cheng, A., Chootinan, P., and Recker, W. W. 2005. Examining the Quality of Synthetic Origin-Destination Trip Table Estimated by Path Flow Estimator. Journal of Transportation Engineering. 131(7). 506-513.
    29. Cremer, M., and Keller, H. 1987. A New Class of Dynamic Methods for the Identification of Origin-Destination Flows. Transportation Research-B. 21(2). 117-132.
    30. Cambridge Systematics, Inc. 2012. Travel Time Collection Data (While Paper). Florida Department of Transportation, District IV.
    31. Daskin, M. S. 1995, Network and Discrete Location: Models, Algorithms and Applications. New York: John Wiley and Sons, Inc.
    32. Danczyk, A., and Liu, H. X. 2011. A Mined-integer Linear Program for Optimizing Sensor Locations along Freeway Corridors. Transportation Research-B. 45(1). 208-217.
    33. Davis, G. A., and Lan, C. J. 1995. Estimating Intersection Turning Movement Proportions from Less-Than-Complete Sets of Counts. Transportation Research Record. 1510. 53-59.
    34. Dixon, M.P., and Rilett, L.R. 2002. Real-Time OD Estimation Using Automatic Vehicle Identification and Traffic Count Data. Computer-Aided Civil and Infrastructure Engineering. 17(1). 7-21.
    35. Dixon, M.P., and Rilett, L.R. 2005. Population Origin-Destination Estimation Using Automatic Vehicle Identification and Volume Data. Journal of Transportation Engineering, 131(2). 75-82.
    36. Eisenman, S.M., and List, G. F. Using Probe Data to Estimate OD Matrices. IEEE Intelligent Transportation Systems Conference, 291-296.
    37. Ehlert, A., Bell, M. G. H., and Grosso, S. 2006. The Optimisation of Traffic Count Locations in Road Networks. Transportation Research-B, 40(6). 460-479.
    38. Friedberg, S. H., Insel, A. J., and Spence, L. E. 2003. Linear Algebra, 4th Edition, New Jersey: Pearson Education.
    39. Gan, L., Yang, H., and Wong, S. C. 2005. Traffic Counting Location and Error Bound in Origin-Destination Matrix Estimation Problems. Journal of Transportation Engineering. 131(7). 524-534.
    40. Gentili, M., and Mirchandani, P. B. 2005. Locating Active Sensors on Traffic Networks. Annals of Operations Research. 136(1). 229-257.
    41. Gentili, M., and Mirchandani, P. B. 2012. Locating Sensors on Traffic Networks: Models, Challenges, Research Opportunities. Transportation Research-C. 24. 227-255.
    42. Hauer, E., Pagitsas, E., and Shin, B. T. 1981. Estimation of Turning Flows from Automatic Counts. Transportation Research Record. 795. 1-7.
    43. He, S. X. 2013. A Graphical Approach to Identify Sensor Locations for Link Flow Inference. Transportation Research-B. 51. 65-76.
    44. Horiguchi, R., Kuwahara, M., and Akahane, H. 2001. The Optimal Arrangement of Infrared Beacons on a Road Network to Collect Vehicle Trajectories-Pattern Analysis Using Schema Theory. Journal of Eastern Society for Transportation Studies. 4(4). 219-228.
    45. Hu, S. R., Madanat S. M., Krogmeier J., Peeta, S. 2001. Estimation of Dynamic Assignment Matrices and OD Demands Using Adaptive Kalman Filtering. ITS Journal - Intelligent Transportation Systems Journal: Technology, Planning, and Operations. 6(3), 281-300.
    46. Hu, S. R., Peeta, S., and Chu, C. H. 2009. Identification of Vehicle Sensor Locations for Link-based Network Traffic Applications. Transportation Research-B, 43(8-9). 873-894.
    47. Hu, S. R., and Liou, H. T. 2011. Estimation of Network Origin-Destination Demands Using Heterogeneous Vehicle Sensors: An Optimal Deployment Policy. Proceedings of The 2011 IEEE Forum on Integrated and Sustainable Transportation Systems (2011 IEEE FISTS),Vienna, Austria.
    48. Hu, S.R., and Liou, H.T. 2012. Inferring Network Origin-Destination Matrices Using Heterogeneous Traffic Sensor Information: An Optimal Sensor Location Policy. Proceedings of the Transportation Research Board (TRB) 91st Annual Meeting. Washington, D.C., U.S.A.
    49. Hu, S.R. and Liou, H.T. 2014. A Generalized Sensor Location Model for the Estimation of Network Origin-Destination Matrices. Transportation Research-C. 40. 93-110.
    50. Hu, T. Y., Tong, C. C., Hu, S. R., Chen, C. N., Chen, L. W., Shiu, P. S., Ho, W. M., Chen, C. Y., Hsu, C. H., Jan, Y. Y., Wu, T. Y., and Guo, H. Y. Demonstration and Outreach of the Real-Time and Dynamic Module for Traffic Analysis and Prediction (II). Institute of Transportation, Ministry of Transportation and Communications. Project No. 97-TDB001, 2008, Taipei, Taiwan.
    51. Hu, T. Y., and Chang, C. P. 2012. Traffic Analysis for the Low-Carbon Campus. The 2012 International Conference and Annual Meeting of the Chinese Institute of Transportation. Tainan, Taiwan.
    52. Jadaan, K. S. 1987. Accuracy of Turning Flow Estimations at Road Junctions. Journal of Transportation Engineering. 115(4). 438-449.
    53. Jeffreys, M., and Norman, M. 1977. On Finding Realistic Turning Flows at Road Junctions. Traffic Engineering and Control. 18(1). 18-21.
    54. Klein, L. A. 2001. Data Requirements and Sensor Technologies for ITS. Massachusetts: Artech House.
    55. Klein, L. A., Gibson, D., and Mills, M. K. 2006a. Traffic Detector Handbook: Handbook: Third Edition—Volume I. FHWA-HRT-06-108. Federal Highway Administration, US Department of Transportation. Washington, D.C., U.S.A.
    56. Klein, L. A., Gibson, D., and Mills, M. K. 2006b. Traffic Detector Handbook: Handbook: Third Edition—Volume II. FHWA-HRT-06-139. Federal Highway Administration, US Department of Transportation. Washington, D.C., U.S.A.
    57. Lam, W. H. K and Lo. H. P. 1990. Accuracy of O-D Estimates from Traffic Counting Stations. Traffic Engineering and Control. 31(6). 358-367.
    58. Lan, C. J., and Davis, G. A. 1999. Real-Time Estimation of Turning Movement Proportions from Partial Counts on Urban Networks. Transportation Research-C. 7(5). 305-327.
    59. Lan, C. J. 2001. Adaptive Turning Flow Estimation based on Incomplete Detector Information for Advanced Traffic Management. IEEE Intelligent Transportation Systems Conference Proceedings. 830-835.
    60. Lan, C. J. 2001. Sufficiency of Detector Information Under Incomplete Configuration for Intersection O-D Estimation. IEEE Intelligent Transportation Systems Conference Proceedings, 398-403.
    61. Leblanc, L. J., and Farhangian, K. 1982. Selection of A Trip Table which Reproduces Observed Link Flows. Transportation Research-B, 16(2). 83-88.
    62. Lewis, C. D. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting. Butterworth Scientific, London, 1982.
    63. Maher, J. M. 1983. Inferences on Trip Matrices from Observations on Link Volumes: A Bayesian Statistical Approach. Transportation Research-B. 17(6). 435-447.
    64. Maher, J. M. 1984. Estimating the Turning Flows at a Junction: A Comparison of Three Models. Traffic Engineering and Control. 25(1). 19-22.
    65. Marshall, M. L. 1979. Labour-saving Methods for Counting Traffic Movements at Three- and Four- arm Junctions. Traffic Engineering and Control. 20(4). 159-162.
    66. Mekky, A. 1979. On Estimating Turning Flows at Road Junctions. Traffic Engineering and Control. 20(10) 486-487.
    67. Mimbela L. Y., and Klein L. A. 2007. Summary of Vehicle Detection and Surveillance Technologies Used in Intelligent Transportation Systems. The Vehicle Detector Clearinghouse. Southwest Technology Development Institute (SWTDI) at New Mexico State University (NMSU).
    68. Minguez, R., Sanchez-Cambronero, S., Castillo, E., and Jimenez, P. 2010. Optimal Traffic Plate Scanning Location for O-D Trip Matrix and Route Estimation in road Networks. Transportation Research-B. 44(2). 282-298.
    69. Mirchandani, P. B., Nobe, S. A., and Wu, W. W. 2001. Online Turning Proportion Estimation in Real-Time Traffic-Adaptive Signal Control. Transportation Research Record. 1748. 80-86.
    70. Mountain, L. J., and Westwell, P. M. 1983.The Accuracy of Estimation of Turning Flows from Automatic Counts. Traffic Engineering and Control. 24(1). 3-7.
    71. Mountain, L. J., and Steele, D. 1983. Prior Information and the Accuracy of Turning Flow Estimates. Traffic Engineering and Control. 24(12). 582-588.
    72. Nakatsuji, T., Nakano, K., Nanthawichit, C., and Suzuki, H. 2004. Estimation of Turning Movements at Intersections. Transportation Research Record. 1882. 53-60.
    73. Nash, S. G., and Sofer, A. 1996. Linear and Nonlinear Programming, New York: McGraw Hill.
    74. Ng, M. 2012. Synergistic Sensor Location for Link Flow Inference without Path Enumeration: A Node-based Approach. Transportation Research-B. 46(6). 781-788.
    75. Nie, Y., Zhang, H. M., and Recker, W. W. 2005. Inferring Origin-Destination Trip Matrices with a Decoupled GLS Path Flow Estimator. Transportation Research-B. 39(6). 497-518.
    76. Nie, Y. M., and Zhang, H. M. 2010. A Relaxation Approach for Estimating Origin-Destination Trip Tables. Networks and Spatial Economics. 10(1). 147-172.
    77. Nihan, N. L., and Davis, G. A. 1987. Recursive Estimation of Origin-Destination Matrices from Input / Output Counts. Transportation Research-B. 21(2). 149-163.
    78. Nihan, N. L., and Hamed, M. M. 1992. Fixed-pointed Approach to Estimating Freeway Origin-Destination Matrices and the Effect of Erroneous Data on Estimate Precision. Transportation Research Record. 1357. 18-28.
    79. Nguyen, S. 1974. An Algorithm for the Traffic Assignment Problem. Transportation Science, 8(3). 203-216.
    80. Nguyen, S. 1977. Estimating an OD Matrix from Network Data: A Network Equilibrium Approach. Centre for Research on Transportation. University of Montreal Publication. 60.
    81. Nguyen, S. 1984. Estimation Origin-Destination Matrices from Observed Flows. Transportation Planning Models, Editor: M. Florian, Elsevier Science Publishers B.V., Netherlands, 363-380.
    82. Norman, M., and Hoffmann, N. 1979. Non-iterative Methods for Generating a Realistic Turning Flow Matrix for a Junction. Traffic Engineering and Control. 20(12). 587-589.
    83. Patil, S. A. Burnham, K. P. and Kovner, J. L. 1979. Nonparametric Estimation of Plant Density by the Distance Method. Biometrics. 35. 597-604.
    84. Qrtuzar, J. D. D., and Willumsen, L. G. 2001. Modelling transport, 3th Edition, West Sussex: John Wiley and Sons, Ltd.
    85. Robillard, P. 1975. Estimating the O-D Matrix from Observed Link Volumes. Transportation Research. 9(2-3). 123-128.
    86. Sheffi, Y. 1985. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods. New Jersey: Prentice Hall.
    87. Sherali, H. D., Desai, J., and Rakha, H. 2006. A Discrete Optimization Approach for Locating Automatic Vehicle Identification Readers for the Provision of Roadway Travel Time. Transportation Research-B. 40(10). 857-871.
    88. Sherali, H. D., Sivanandan, R., and Hobeika, A. G. 1994. A Linear Programming Approach for Synthesizing Origin-Destination Trip Tables from Link traffic Volumes. Transportation Research-B. 28(3). 213-233.
    89. Sherali, H. D., Narayanan, A., and Sivanandan, R. 2003. Estimation of Origin-Destination Trip-Tables Based on a Partial Set of Traffic Link Volumes. Transportation Research-B. 37(9). 815-836.
    90. Sinotech Engineering Consultants. The First Stage Comprehensive Planning of Yanchao Light Rail Transit System in the Kaohsiung Metropolitan Area. Kaohsiung County Government, Kaohsiung County, 2008.
    91. Sohn, K., and Kim, D. 2008. Dynamic Origin-Destination Flow Estimation Using Cellular Communication System. IEEE Transactions on Vehicular Technology. 57(5). 2703-2713.
    92. Spiess, H. 1987. A Maximum Likelihood Model for Estimating Origin-Destination Matrices. Transportation Research-B. 21(5). 395-412.
    93. Tamin, O. Z., and Willumsen, L. G. 1989. Transport Demand Model Estimation from Traffic Counts. Transportation. 16(1). 3-26.
    94. Teodorovic, D., Vzn Aerde, M., Zhu, F., and Dion, F. 2002. Genetic Algorithms Approach to the Problem of the Automated Vehicle Identification Equipment Locations. Journal of Advanced Transportation, 36(1). 1-21.
    95. Tian, J., Virkler, M. R., and Sun, C. 2004. Field Testing for Automated Identification of Turning Movements at Signalized Intersections. Transportation Research Record. 1867. 210-216.
    96. Timms, P. M. 2001. A Philosophical Context for Methods to Estimate Origin-Destination Trip Matrices Using Link Counts. Transport Reviews, 21(3). 269-301.
    97. Timms, P. M. 2001. A Review of Methods for Estimating Origin-Destination Trip Matrices Using Link Counts. Working Paper 556, Institute of Transport Studies, University of Leeds.
    98. Toppen, A, and Wunderlich, K. 2003. Travel Time Data Collection for Measurement of Advanced Traveler Information Systems Accuracy. DTFH61-00-C-00001. Federal Highway Administration, US Department of Transportation. Washington, D.C., U.S.A.
    99. Turner, S. M. 1996. Advanced Techniques for Travel Time Data Collection. Transportation Research Record. 1551. 51-58.
    100. Turner, S. M., Eisele, W. L., Benz, R. J., and Holdener, D. J. 1998. Travel Time Data Collection Handbook. FHWA-PL-98-035. Federal Highway Administration, US Department of Transportation. Washington, D.C., U.S.A.
    101. Van der Zijpp N. J. 1997. Dynamic OD-Matrix Estimation from Traffic Counts and Automated Vehicle Identification Data. Transportation Research Record. 1607. 87–94.
    102. Van Zuylen, H. J. 1979. The Estimation of Turning Flows on a Junction. Traffic Engineering and Control. 20(11) 539-541.
    103. Van Zuyen, H. J., and Williumsen, L. G. 1980. The Most Likely Trip Matrix Estimated From Traffic Counts. Transportation Research-B. 14(3). 281-293.
    104. Van Zuyen, H. J., and Branstion D. M. 1982. Consistent Link Flow Estimation form Counts. Transportation Research-B. 16(6). 473-476.
    105. Virkler, M. R., and Kumar, N. R. 1998. System to Identify Turning Movements at Signalized Intersections. Journal of Transportation Engineering. 124(6). 607-609.
    106. Wang, N., Gentili, M., and Mirchandani, P. 2012. Model to Locate Sensors for Estimation of Static Origin-Destination Volumes Given Prior Flow Information. Transportation Research Record. 2280. 67-73.
    107. Willumsen, L. G. 1978. Estimation of an O-D Matrix form Traffic Counts- A Review. Working Paper 99. Institute of Transport Studies, University of Leeds.
    108. Willumsen, L. G. 1981. Simplified Transport Models Based on Traffic Counts. Transportation. 10(3). 257-278.
    109. Yang, H., Sasaki, T., Iida, Y., and Asakuba, Y. 1992. Estimation of Origin-Destination Matrices from Link Traffic Counts on Congested Networks. Transportation Research-B. 26(6). 417-434.
    110. Yang, H. 1995. 1995. Heuristic Algorithm for the Bi-level Origin-Destination Matrix Estimation Problem. Transportation Research-B. 29(4). 231-242.
    111. Yang, H., and Zhou, J. 1998. Optimal Traffic Countering Locations for Origin-Destination Matrix Estimation. Transportation Research-B. 32(2). 109-126.
    112. Yang, B., and Miller-Hooks, E. 2002. Determining Critical Arcs for Collecting Real-time Travel Time formation. Transportation Research Record, 1783, 34-41.
    113. Ye, Y. M., Hsiao, W. C., Hsu, H. H., Lee, L. J. and Yeah, M. H., 2000. Household travel characteristics survey in Tainan metropolitan. Institute of Transportation, Ministry of Transportation and Communications. Serial No. 90-37-5211. Taipei, Taiwan.
    114. Yim, P. K. N., and Lam, W. H. K. 1998. Evaluation of Count Location Selection Methods for Estimation of O-D Matrices. Journal of Transportation Engineering. 124(4). 376-383.
    115. Zhou, X., and Mahmassani, H. S. 2005. Dynamic OD Demand Estimation Using Automatic Vehicle Identification Data. IEEE Transactions on Intelligent Transportation Systems. 7(1) 105–114.
    116. Zhou, X., and List, G. F. 2010. An Information-Theoretic Sensor Location Model for Traffic Origin-Destination Demand Estimation Applications. Transportation Science. 44(2). 254-273.

    下載圖示 校內:2020-02-16公開
    校外:2020-02-16公開
    QR CODE