簡易檢索 / 詳目顯示

研究生: 謝秉宏
Hsieh, Ping-Hung
論文名稱: P型CuAlO2薄膜成長行為與導電性質研究
Study of Growth Behavior and Electrical Conductivity of P-type CuAlO2 Thin Film
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 銅鋁氧化物薄膜濺鍍X 光吸收光譜導電特性
外文關鍵詞: copper-aluminumoxide, thin film, sputtering, XAFS (EXAFS and XANES), electrical properties
相關次數: 點閱:129下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分為三大部分:第一部分為黏貼不同片數之銅片在鋁靶上,沉積Cu-Al-O 薄膜,討論鋁含量對於薄膜的導電性與光性質的影響。第二部分則是製備銅鋁比例接近的 Cu-Al-O 薄膜,並討論銅鋁比例接近條件下射頻功率和沉積速率對於 CuAlO2 晶相的成長行為研究。第三部分是將 Cu-Al-O 薄膜沉積於藍寶石基板 (sapphire) 上,藉由退火處理方式得到 CuAlO2 相後,利用同步輻射分析其 CuAlO2 薄膜,討論其特徵峰所代表的涵義,以及混成軌域對於電性的影響關係。
    沉積後或退火後的薄膜以電子微探儀做成份定量;低掠角 X 光繞射進行薄膜結晶性分析;導電性方面,利用四點探針及霍爾量測得到薄膜電阻率、載子濃度與載子遷移率。在光學性質方面,以紫外光-可見光光譜儀,在可見光範圍下量測薄膜的穿透率。在電子組態及電子軌域方面,則使用同步輻射分析儀。
    第一部分的研究結果顯示,在黏貼兩片銅的條件下可以得到成份最接近 CuAlO2薄膜。鋁含量的多寡主要會影響在薄膜的結晶性與導電性質,由於鋁含量的增加會置換掉銅離子位子,造成晶格扭曲使得結晶性變差,而當銅離子位置被置換時會產生多餘電子造成導電性質變差,由原本的 0.5 Ω-cm 升高至 4.8MΩ,最後超過量測範圍。而穿透率隨著鋁含量增加而增加,穿透率可達 74.9%。第二部分的研究中,在不同的射頻功率下沉積 Cu-Al-O 薄膜,可以觀察發現隨著射頻功率增加由原本的非晶態轉變為具有結晶性的 CuAlO2 相。然而較高的射頻功率結晶性卻不如預期的好,主要是因為其薄膜生長行為除了與射頻功率有關外,沉積速率也是一個重要的因素。在本研究的條件下,射頻功率為 250 watt,沉積速率為 1.7 nm/min,可得到較佳之CuAlO2相與較低的電阻率為 1.9 KΩ-cm。第三部分在退火溫度 800 °C 時可以成功的製備出具有 (00l) 面的優選生長方向的 CuAlO2 薄膜。此外由結果也可知道 (0001) sapphire 基板會與薄膜的優選方向有相關。Cu K-edge 和 O K-edge XAS 圖譜結果可知,特徵峰形貌會隨著晶體結構的改變和不同軌域的混成貢獻而有所改變。在本研究中根據 Cu L3-edge 圖譜可以觀察到在退火 800 °C下薄膜中含有微量的 Cu2+ 價態。此外,Cu2+ 的存在,使得退火 800 °C薄膜的價帶最大值 (valence band maximum, VBM) 數值會小於退火 1000 °C 之 VBM。使退火溫度 800 °C下的薄膜可得到一最低電阻率為 1.07 Ω-cm,主要與具有 (00l) 面的優選方向生長方向和薄膜中含有些微的 Cu2+ 離子有關。

    These researches were divided into three parts. (1) the effects of Al content on crystal structure, electrical conductivity, and optical transmittance were studied. The XRD and XPS results show that the additional Al ions substituted the Cu ions; this substitution decreased the crystallinity and electrical conductivity of the films. The resistivity obtained in this study ranges from 0.5 Ω-cm to 4.8 MΩ depending on the concentration of Al. The transmittance of Cu-Al-O film changed from 20.1% to 73.9% when Al content increased from 0 to 20.5 at.%. (2) To investigate the effects of RF power and growth rate on the growth of crystallized CuAlO2 thin films. Crystallized CuAlO2 were successfully prepared with an RF power of 200 and 250 watt at room temperature. Also, the XRD and XAS results suggest that the growth of crystallized CuAlO2 can be influenced by the RF power and growth rate. (3) The effects of annealing temperature on the crystal structure, electronic structure, valence state, and electrical properties of the Cu-Al-O films are investigated. The CuAlO2 phase formed in films annealed at 800 °C and 1000 °C. The resistivity values of the 800 °C and 1000 °C annealed films were measured as 1.07 Ω-cm and 864.01 Ω-cm, respectively. In addition, the preferred (00l) growth orientation and the reduction of the energy band gap were responsible for the minimum resistivity found in 800 °C annealed film.

    摘要 I Extended Abstract III 致謝 VI 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1-1 前言 1 1-1-1 透明導電膜的發展 1 1-1-2 p-type透明導電膜 1 1-2 研究目的 2 第二章 理論基礎 5 2-1 透明導電氧化物薄膜 5 2-1-1 導電性質 5 2-1-2 光學性質 7 2-2 CMVB (chemical modulation of the valence band) 理論 8 2-3 CuAlO2簡介與相關性質 9 2-4 文獻回顧 10 2-5 同步輻射原理 14 第三章 實驗方法與步驟 26 3-1 實驗設備 26 3-1-1 真空濺鍍系統 26 3-1-2 退火系統 27 3-2 材料準備 27 3-2-1 靶材 27 3-2-2 基材 28 3-2-3 濺鍍氣體 28 3-3 實驗方法 28 3-3-1 基材清洗 28 3-3-2 薄膜製備 29 3-4 薄膜性質分析 29 3-4-1 薄膜厚度量測 29 3-4-2 成份分析 29 3-4-2-1 X 光波長散佈分析儀 (wavelength dispersive X-ray spectrometer, WDS) 30 3-4-2-2 X光光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 30 3-4-3 微結構分析 31 3-4-3-1 低掠角 X 光繞射分析 (glancing incident angle X-ray diffraction, GIAXRD) 31 3-4-3-2 X光吸收光譜分析 (X-ray Absorption Spectroscopy, XAS) 32 3-4-3-3 掃瞄式電子顯微分析 (scanning electron microscope, SEM) 33 3-4-4 電性分析 33 3-4-4-1 四點探針量測 (4-point probe measurement) 33 3-4-4-2 霍爾效應量測 (Hall effect measurement) 34 3-4-5 光學性質分析 34 第四章 結果與討論 41 4-1 鋁含量對於 Cu-Al-O 薄膜性質的影響 41 4-1-1 薄膜成份分析 41 4-1-2 微結構分析 42 4-1-3 化學鍵結分析 44 4-1-4 導電性質分析 45 4-1-5 光學性質分析 46 4-1-6 小結 48 4-2 射頻功率與沉積速率對 CuAlO2 相成長行為影響研究 49 4-2-1 薄膜成份分析 49 4-2-2 沉積速率分析 49 4-2-3 微結構分析 50 4-2-4 Cu-Al-O 薄膜 O K-edge 吸收圖譜分析 53 4-2-5 Cu-Al-O 薄膜之導電性質研究 55 4-2-6 小結 57 4-3 Cu-Al-O薄膜退火溫度對電性之影響 58 4-3-1 薄膜微結構分析 58 4-3-2 Cu-Al-O 薄膜 Cu K-edge 吸收圖譜分析 60 4-3-3 Cu-Al-O 薄膜 O 1s 和 Cu 3d 吸收圖譜分析 62 4-3-4 Cu-Al-O 薄膜 Cu L3-edge 吸收圖譜與價帶分析 66 4-3-5 Cu-Al-O 薄膜導電性質分析 68 4-3-6 小結 70 第五章 結論 91 第六章 未來工作 93 參考文獻 94

    [1] D. Depla, S. Mahieu, "Reactive Sputter Deposition", Springer, Berlin, (2008).
    [2] 楊明輝,"透明導電膜",藝軒圖書出版社,台北,(2006)1。
    [3] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, "p-type electrical conduction in transparent thin films of CuAlO2", Nature, 389 (1997) 939.
    [4] Z. Deng, X. Fang, R. Tao, W. Dong, D. Li, X. Zhu, "The influence of growth temperature and oxygen on the phase compositions of CuAlO2 thin films prepared by pulsed laser deposition", Journal of Alloys and Compounds, 466 (2008) 408.
    [5] Y. Wang, H. Gong, F. Zhu, L. Liu, L. Huang, A.C.H. Huan, "Optical and electrical properties of p-type transparent conducting Cu-Al-O thin films prepared by plasma enhanced chemical vapor deposition", Materials Science and Engineering: B, 85 (2001) 131.
    [6] A.N. Banerjee, R. Maity, P.K. Ghosh, K.K. Chattopadhyay, "Thermoelectric properties and electrical characteristics of sputter-deposited p-CuAlO2 thin films", Thin Solid Films, 474 (2005) 261.
    [7] A. N. Banerjee, C. K. Ghosh, K. K. Chattopadhyay, "Effect of excess oxygen on the electrical properties of transparent p-type conducting CuAlO2 thin films", Solar Energy Materials and Solar Cells, 89 (2005) 75.
    [8] N. Tsuboi, Y. Takahashi, S. Kobayashi, H. Shimizu, K. Kato, F. Kaneko, "Delafossite CuAlO2 films prepared by reactive sputtering using Cu and Al targets", Journal of Physics and Chemistry of Solids, 64 (2003) 1671.
    [9] A.N. Banerjee, R. Maity, K.K. Chattopadhyay, "Preparation of p-type transparent conducting CuAlO2 thin films by reactive DC sputtering", Materials Letters, 58 (2004) 10.
    [10] A.N. Banerjee, S. Kundoo, K.K. Chattopadhyay, "Synthesis and characterization of p-type transparent conducting CuAlO2 thin film by DC sputtering", Thin Solid Films, 440 (2003) 5.
    [11] G. Dong, M. Zhang, X. Zhao, Y. Li, H. Yan, "Influence of working gas pressure on structure and properties of CuAlO2 films", Journal of Crystal Growth, 311 (2009) 1256.
    [12] A. S. Reddy, P. S. Reddy, S. Uthanna, G. M. Rao, "Characterization of CuAlO2 films prepared by dc reactive magnetron sputtering", Journal of Materials Science: Materials in Electronics, 17 (2006) 615.
    [13] H.Y. Chen, M.W. Tsai, "Delafossite-CuAlO2 films prepared by annealing of amorphous Cu-Al-O films at high temperature under controlled atmosphere", Thin Solid Films, 519 (2011) 5966.
    [14] D.S. Ginley, C. Bright, "Transparent conducting oxides", MRS Bulletin, 25 (2011) 15.
    [15] H. Kawazoe, H. Yanagi, K. Ueda, H. Hosono, "Transparent p-type conducting oxides: design and fabrication of p-n heterojunctions", MRS Bulletin, 25 (2000) 28.
    [16] F.A.Benko, F.P. Koffyberg, "Opto-electronic properties of CuAlO2", Jorunal of Physics and Chemistry of Solids, 45 (1984) 57.
    [17] T. Ishiguro, N. Ishizawa, N. Mizutani, M. Kato, "A new delafossite-type compound CuYO2:I. synthesis and characterization", Journal of Solid State Chemistry, 49 (1983) 232.
    [18] T. Ishiguro, N. Ishizawa, N. Mizutani, M. Kato, "High temperature structural investigation of the delafossite type compound CuAlO2", Journal of Solid State Chemistry, 41 (1982) 132.
    [19] M.S. Lee, T.Y. Kim, D. Kim, "Anisotropic electrical conductivity of delafossite-type CuAlO2 laminar crystal", Applied Physics Letters, 79 (2001) 2028.
    [20] I. Hamada, H. Katayama-Yoshida, "Energetics of native defects in CuAlO2", Physica B: Condensed Matter, 376-377 (2006) 808.
    [21] T. Ishiguro, A. Kitazawa, N. Mizutani, M. Kato, "Single-crystal growth and crystal structure refinement of CuAlO2", Jorurnal of Solid State Chemistry, 40 (1981) 170.
    [22] H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, N. Hamada, "Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2", Journal of Applied Physics, 88 (2000) 4159.
    [23] J. Robertson, P.W. Peacock, M.D. Towler, R. Needs, "Electronic structure of p-type conducting transparent oxides", Thin Solid Films, 411 (2002) 96.
    [24] S. Nandy, J. U.Kolkata,U. N. Maiti, C.K. Ghosh, K. K. Chattopadhyay, "Optical and electrical properties of amorphous CuAlO2 thin film deposited by RF magnetron sputtering", Physics of Semiconductor Devices, (2007) 443.
    [25] W. Lan, M. Zhang, G. Dong, P. Dong, Y. Wang, H. Yan, "The effect of oxygen on the properties of transparent conducting Cu-Al-O thin films deposited by rf magnetron sputtering", Materials Science and Engineering: B, 139 (2007) 155.
    [26] N. Tsuboi, T. Moriya, S. Kobayashi, H. Shimizu, K. Kato, F. Kaneko, "Characterization of CuAlO2 thin films prepared on sapphire substrates by reactive sputtering and annealing", Japanese Journal of Applied Physics, 47 (2008) 592.
    [27] R.S. Yu, S.C. Liang, C.J. Lu, D.C. Tasi, F.S. Shieu, "Characterization and optoelectronic properties of p-type N-doped CuAlO2 films", Applied Physics Letters, 90 (2007) 191117.
    [28] X.G. Zheng, K. Taniguchi, A. Takahashi, Y. Liu, C.N. Xu, "Room temperature sensing of ozone by transparent p-type semiconductor CuAlO2", Applied Physics Letters, 85 (2004) 1728.
    [29] A.N. Banerjee, K.K. Chattopadhyay, "Size-dependent optical properties of sputter-deposited nanocrystalline p-type transparent CuAlO2 thin films", Journal of Applied Physics, 97 (2005) 084308.
    [30] B.K. Teo, "EXAFS: Basic principles and data analysis", Springer-Verlag, New York (1986).
    [31] R. E. Staubera, J. D. Perkinsb, P. A. Parillab, D. S. Ginley, "Thin film growth of transparent p-type CuAlO2", Electrochemical and Solid-State Letters, 12 (1999) 654.
    [32] K. Tonooka, K. Shimokawa, O. Nishimura, "Properties of copper-aluminum oxide films prepared by solution methods", Thin Solid Films, 411 (2002) 129.
    [33] JANAF, "Thermochemical Table", 3rd Edn, American Chemical Society and American Institute of Physics for National Bureau of Standard, Midland USA (1985).
    [34] W.Y. Yang, W.G. Kim, S.W. Rhee, "Radio frequency sputter deposition of single phase cuprous oxide using Cu2O as a target material and its resistive switching properties", Thin Solid Films, 517 (2008) 967.
    [35] B. Chen, D. Yang, P.A. Charpentier, M. Zeman, "Al3+-doped vanadium dioxide thin films deposited by PLD", Solar Energy Materials and Solar Cells, 93 (2009) 1550.
    [36] S.H. Jeong, B.N. Park, S.B. Lee, J.H. Boo, "Study on the doping effect of Li-doped ZnO film", Thin Solid Films, 516 (2008) 5586.
    [37] W.L. Jang, Y.M. Lu, W.S. Hwang, W.C. Chen, "Electrical properties of Li-doped NiO films", Journal of the European Ceramic Society, 30 (2010) 503.
    [38] J.C. Slater, "Atomic radii in crystals", The Journal of Chemical Physics, 41 (1964) 3199.
    [39] C. Bouzidi, H. Bouzouita, A. Timoumi, B. Rezig, "Fabrication and characterization of CuAlO2 transparent thin films prepared by spray technique", Materials Science and Engineering: B, 118 (2005) 259.
    [40] R.S. Yu, C.J. Lu, D.C. Tasi, S.C. Liang, F.S. Shieu, "Phase transformation and optoelectronic properties of p-type CuAlO2thin films", Journal of The Electrochemical Society, 154 (2007) H838.
    [41] K.T. Jacob, C.B. Alcock, "Thermodynamics of CuAlO2 and CuAl2O4 and phase equilibria in the system Cu2O-CuO-Al2O3", Journal of The American Ceramic Society, 58 (1975) 192.
    [42] K. Tang, X. Wang, W. Yan, J. Yu, R. Xu, "Fabrication of superhydrophilic Cu2O and CuO membranes", Journal of Membrane Science, 286 (2006) 279.
    [43] J.F. Moulder, "Handbook of X-ray Photoelectron Spectroscopy", Perkin-Elmer (1992).
    [44] J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, M. T. Czyzyk, "Electronic structure of Cu2O and CuO", Physical Review B, 38 (1988) 11322.
    [45] N. S. Mclntyre, S. Sunder, D. W. Shoesmith, F. W. Stanchell, "Chemical information from XPS-applications to the analysis of electrode surfaces", Journal of Vacuum Science and Technology, 18 (1981) 714.
    [46] S. I. Suda, T. Aoyama, K. Kanamura, T. Umegaki, "Effects of lanthanum on the electrical conductivity of CuO ceramics", Japanese Journal of Applied Physics, 39 (2000) 3566.
    [47] A.S. Reddy, H.H. Park, G.M. Rao, S. Uthanna, P.S. Reddy, "Effect of substrate temperature on the physical properties of dc magnetron sputtered CuAlO2 films", Journal of Alloys and Compounds, 474 (2009) 401.
    [48] A. Buljan, M. Llunell, E. Ruiz, P. Alemany, "Color and conductivity in Cu2O and CuAlO2:atheoretical analysis of d10•••d10 interactions in solid-state compounds", Chemistry of Materials, 13 (2001) 338.
    [49] Y.M. Lu, W.S. Hwang, W.Y. Liu, J.S. Yang, "Effect of RF power on optical and electrical properties of ZnO thin film by magnetron sputtering",Materials Chemistryand Physics, 72 (2001) 269.
    [50] P.H. Hsieh, Y.M. Lu, W.S. Hwang, J.J. Yeh, W.L. Jang, "Effect of Al content on electrical conductivity and transparency of p-type Cu-Al-O thin film", Surface and Coatings Technology, 205 (2010) S206.
    [51] S. Dangtip, N. Sripongphan, N. Boonyopakorn, C. Thanachayanont, "Effects of rf-power and working pressure on formation of rutile phase in rf-sputtered TiO2 thin film", Ceramics International, 35 (2009) 1281.
    [52] A.B. Gurevich, B.E. Bent, A.V. Teplyakov, J.G. Chen, "A NEXAFS investigation of the formation and decomposition of CuO and Cu2O thin films on Cu(100)", Surface Science, 442 (1999) L971.
    [53] J.G. Chen, "NEXAFS investigations of transition metal oxides nitrides carbides sulfides and other interstitial compounds", Surface Science Reports, 30 (1997) 1.
    [54] C. Arhammar, A. Pietzsch, N. Bock, E. Holmstrom, C.M. Araujo, J. Grasjo, S. Zhao, S. Green, T. Peery, F. Hennies, S. Amerioun, A. Fohlisch, J. Schlappa, T. Schmitt, V.N. Strocov, G.A. Niklasson, D.C. Wallace, J.E. Rubensson, B. Johansson, R. Ahuja, "Unveiling the complex electronic structure of amorphous metal oxides", Proceedings of the National Academy of Sciences, 108 (2011) 6355.
    [55] D. Aston, D. Payne, A. Green, R. Egdell, D. Law, J. Guo, P. Glans, T. Learmonth, K. Smith, "High-resolution X-ray spectroscopic study of the electronic structure of the prototypical p-type transparent conducting oxide CuAlO2", Physical Review B, 72 (2005) 195115.
    [56] C.T. Su, H.Y. Lee, B.K. Wu, M.Y. Chern, "Development of phase-pure CuAlO2 thin films grown on c-plane sapphire substrates prepared by RF sputtering", Journal of Crystal Growth, 328 (2011) 25.
    [57] W. Lan, M. Zhang, G. Dong, Y. Wang, H. Yan, "Improvement of CuAlO2 thin film electrical conduction by the anisotropic conductivity", Journal of Materials Research, 22 (2011) 3338.
    [58] W. Lan, J.Q. Pan, C.Q. Zhu, G.Q. Wang, Q. Su, X.Q. Liu, E.Q. Xie, H. Yan, "Role of oxygen in structural properties of annealed CuAlO2 films", Journal of Crystal Growth, 314 (2011) 370.
    [59] M.F. Al-Kuhaili, "Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O)", Vacuum, 82 (2008) 623.
    [60] H.F. Jiang, X.B. Zhu, H.C. Lei, G. Li, Z.R. Yang, W.H. Song, J.M. Dai, Y.P. Sun, Y.K. Fu, "Comparative study of the structural, optical, and electrical properties of CuAlO2 thin films on Al2O3 and YSZ substrates via chemical solution deposition", Journal of Sol-Gel Science and Technology, 58 (2010) 12.
    [61] H. Luo, M. Jain, T.M. McCleskey, E. Bauer, A.K. Burrell, Q. Jia, "Optical and structural properties of single phase epitaxial p-type transparent oxide thin films, Advanced Materials, 19 (2007) 3604.
    [62] J.H. Shy, B.H. Tseng, "Characterization of CuAlO2 thin film prepared by rapid thermal annealing of an Al2O3/Cu2O/sapphire structure, Journal of Physics and Chemistry of Solids, 66 (2005) 2123.
    [63] Y. Kuroda, Y. Yoshikawa, S.I. Konno, H. Hamano, H. Maeda, R. Kumashiro, M. Nagao, "Specific feature of copper ion-exchanged mordenite for dinitrogen adsorption at room temperature", The Journal of Physical Chemistry, 99 (1995) 10621.
    [64] T. Yamamoto, T. Tanaka, S. Suzuki, R. Kuma, K. Teramura, Y. Kou, T. Funabiki, S. Yoshida, "NO Reduction with CO in the presence of O2 over Cu/Al2O3 (3)-structural analysis of active species by means of XAFS and UV/VIS/NIRspectroscopy", Topics in Catalysis, 18 (2002) 113.
    [65] T. Yamamoto, "Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole?", X-Ray Spectrometry, 37 (2008) 572.
    [66] J. Biener, M. Bäumer, R.J. Madix, P. Liu, E.J. Nelson, T. Kendelewicz, G.E. Brown, "A synchrotron study of the growth of vanadium oxide on Al2O3(0001)", Surface Science, 441 (1999) 1.
    [67] M. Gautier-Soyer, F. Jollet, C. Noguera, "Influence of surface relaxation on the electronic states of the α-Al2O3 (0001) surface: a self-consistent tight-binding approach", Surface Science, 352-354 (1996) 755.
    [68] G. Martine, R. Gilles, V. L. Pham, V. Bruno, P. Maud, T. Nathalie, J. Francois, J.P. Duraud, "α-Al2O3 (0001) surfaces: atomic and electronic structure", Journal of the American Ceramic Society 77 (1994) 323.
    [69] Z.Q. Yao, B. He, L. Zhang, C.Q. Zhuang, T.W. Ng, S.L. Liu, M. Vogel, A. Kumar, W.J. Zhang, C.S. Lee, S.T. Lee, X. Jiang, "Energy band engineering and controlled p-type conductivity of CuAlO2 thin films by nonisovalent Cu-O alloying", Applied Physics Letters, 100 (2012) 062102.
    [70] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, "Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting", Nano letters, 11 (2011) 3026.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE