簡易檢索 / 詳目顯示

研究生: 賴宇聖
Lai, Yu-Sheng
論文名稱: 應用虛擬裂紋閉合法於非等向性材料界面裂紋問題
Application of Virtual Crack Closure Technique for Anisotropic Interfacial Crack Problem
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 103
中文關鍵詞: 非等向性三維界面裂紋應力強度因子有限元素分析虛擬裂紋閉合法接觸
外文關鍵詞: Anisotropic, Stroh, Interface fracture, Three-dimensional crack problem, Complex stress intensity factor, Phase angles, Finite element analysis, Virtual crack closure technique, Contact
相關次數: 點閱:106下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討在三維問題中,雙層異向性材料界面裂紋受應力作用下,裂紋前緣之破壞力學參數之分佈,利用有限元素法配合虛擬裂紋閉合法計算非等向性雙材料界面裂紋的三維破壞力學參數,包括應變能釋放率,應力強度因子和相位角。其中,應變能釋放率可藉由裂紋尖端元素節點上的力量和位移計算出的裂紋閉合積分式疊加求得。另外,以史磋公式為基礎理論,從得到之界面裂紋尖端的漸近應力和位移場與裂紋閉合積分式之理論關係,可求得以裂紋閉合積分式計算應力強度因子代數式,再由相位角之定義求得相位角。由於界面裂紋尖端的奇異彈性應力場具有震盪的行為,應力強度因子之值亦會隨著使用之長度單位而有震盪的行為。這個震盪的特性,會造成直接使用虛擬裂紋閉合法求解界面裂紋之應力強度因子的困難。對此問題,可藉由特定的材料特徵長度來無因次化震盪的應力強度因子,使其單位回復至(應力)×(長度)1/2。此外,對於較特殊之界面裂紋問題,包含裂紋尖端發生大範圍接觸和裂紋面受到內壓力的情况,本研究亦提出專用的公式來計算其破壞力學參數。針對於本文所提出的破壞力學參數求解數值方法,首先透過與界面裂紋問題的理論解析解比對驗證。而後,本文討論應用虛擬裂紋閉合法來分析非等向性雙材料界面上之幣狀、圓弧形邊緣或角落裂紋界面受到均勻遠端負載的問題。

    The problem of a three-dimensional interface crack between two anisotropic materials is investigated by using finite element method with the virtual crack closure technique. Fracture mechanics parameters, including the strain energy release rate, the stress intensity factors and phase angles along the interface crack front are obtained by using the numerical approach. In this approach, the crack closure integrals and the strain energy release rate are first calculated from the nodal load and displacement solutions of the singular quarter-point crack-tip finite elements. A set of algebraic equations relating the crack closure integrals and the stress intensity factors is derived from the asymptotic displacement and stress fields around the interface crack tip, and is applied to determine the stress intensity factors and the corresponding phase angles. The issue of oscillating stress intensity factors associated to the bimaterial interface is overcome by normalizing the stress intensity factors to a characteristic length such that the stress intensity factors have a unit of (stress)x(length)^(1/2). Alternative procedures are also described for the cases of crack under inner pressure and crack faces under large-scale contact. Validation for the procedure is performed by comparing numerical results to analytical solutions for the problems of interface crack subjected to either remote tension or mixed loading. The numerical approach is then applied to study the problem of an anisotropic bimaterial interface crack with circular-shaped crack front. Solutions for an embedded penny-shaped crack, a semi-circular edge crack, or a quarter-circular corner crack on the interface of two cross-ply composite layers under either mode-I or mixed-moded remote loadings are presented as application examples of the proposed approach.

    摘要.................................................... I 英文摘要................................................. II 誌謝.................................................... IV 目錄.................................................... V 表目錄.................................................. VII 圖目錄.................................................. VIII 符號說明................................................. XII 第一章 緒論.............................................. 1 1.1 前言............................................... 1 1.2 文獻回顧............................................ 2 1.3 研究目的與方法....................................... 5 1.4 論文架構............................................ 5 第二章 理論基礎........................................... 7 2.1 史磋公式............................................ 7 2.2 界面破壞力學參數..................................................... 12 2.2.1 應力強度因子....................................... 12 2.2.2 界面裂紋應變能釋放率................................. 20 2.3 裂紋尖端大範圍接觸情形................................. 22 2.4 三維奇異有限元素..................................... 25 2.5 裂紋面上受內壓之修正.................................. 34 第三章 方法驗證........................................... 38 3.1 非等性雙材料平板界面裂紋負載問題........................ 38 3.2 各種角交界面裂紋問題分析............................... 41 3.3 界面裂紋大範圍接觸問題................................. 52 第四章 結果與討論......................................... 57 4.1 三維等向性幣狀界面裂紋問題分析.......................... 57 4.2 非等向性雙材料界面圓弧形裂紋問題........................ 62 4.2.1界面內嵌幣狀裂紋..................................... 62 4.2.2界面邊緣半圓形裂紋.................................... 65 4.2.3界面角落四分之一圓形裂紋............................... 68 4.3 非等向性雙材料界面之幣狀裂紋受遠端混合應力問題............. 71 4.3.1界面邊緣半圓形裂紋.................................... 72 4.3.2界面內嵌幣狀裂紋..................................... 74 4.3.3界面角落四分之一圓形裂紋............................... 77 第五章 結果及討論......................................... 80 參考文獻................................................. 82 附錄.................................................... 88

    [1] Z. Suo, “Singularities, Interface and cracks in Dissimilar Anisotropic Media,” Proceeding of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 427, pp. 331-358, 1990.
    [2] V. I. Mossakovskii and M. T. Rybka, “Generalization of the Griffith-Snedden criterion for the case of a nonhomogeneous body,” Journal of Applied Mathematics and Mechanics, Vol. 28, pp. 1277-1286, 1964.
    [3] T. C. Chiu and H. C. Lin, “Analysis of stress intensity factors for three-dimensional interface crack problems in electronic packages using the virtual crack closure technique,” International Journal of Fracture, Vol. 156, pp. 75-96, 2009.
    [4] M. Nagai, T. Ikeda and N. Miyazaki, “Stress intensity factor analysis of an interface crack between dissimilar anisotropic materials,” International Journal of Fracture, Vol. 74, pp. 2481-2497, 2007.
    [5] G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate,” Journal of Applied Mechanics, Vol. 24, pp. 361-364, 1957.
    [6] E. F. Rybicki and M. F. Kanninen, “A finite element calculation of stress intensity factors by a modified crack closure integral,” Engineering Fracture Mechanics Vol. 9, pp. 931-938, 1977.
    [7] K. N. Shivakumar, P. W. Tan and J.C. Newman, Jr. , “A virtual crack-closure technique for calculating stress intensity factors for cracked three dimensional bodies,” International Journal of Fracture, Vol. 36, pp. R43-R50, 1988.
    [8] I. S. Raju, “Simple formulas for strain-energy release rates with higher order and
    singular finite elements,” NASA/CR – 1986-178186.
    [9] G. D. Roeck and M. M. Wahab, “ Strain energy release rate formulae for 3D finite element.” Engineering Fracture Mechanics, Vol. 50, pp. 569-580, 1995.
    [10] I. S. Raju, R. Sistla and T. Krishnamurthy, “Fracture Mechanics analyses for skin-stiffener debonding,” Engineering Fracture Mechanics, Vol. 54, pp. 371-385, 1996.
    [11] S. A. Fawaz, “Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an elliptical crack front,” Engineering Fracture Mechanics, Vol. 59, pp. 327- 42, 1998.
    [12] D. Xie and J. S. Biggers, “Strain energy release rate calculation for a moving delamination front of arbitrary shape based on virtual crack closure technique,” Part I: Formulation and validation. Engineering Fracture Mechanics, Vol. 73, pp. 771-85, 2006.
    [13] A. Miravete and M. A. Jimenez “Application of the finite-element methodto predict the onset of delamination growth,” Applied Mechanics Reviews, Vol. 55, pp. 89-106, 2002.
    [14] R. Krueger, The virtual crack closure technique: history, approach and applications, NASA/CR-2002-211628.
    [15] S. G. Leknitskii, Theory of elasticity of an anisotropic elastic body.
    [16] A. N. Stroh, “Steady State Problems in Anisotropic Elasticity,” Journal of Mathematical Physics, Vol. 41, pp. 77-103, 1962.
    [17] C. Hwu, “Fracture parameters for the orthotropic bimaterial interface cracks,” Engineering Fracture Mechanics, Vol. 45, pp. 89-97, 1993.
    [18] M. L. Williams, “The stresses around a fault or crack in dissimilar media.” Bulletin of the Seismological Society of America, Vol. 49, pp. 199-204, 1959.
    [19] J. R. Rice, “Elastic fracture mechanics concepts for interfacial cracks,” Journal of Applied Mechanics, Vol. 55, pp. 98-103, 1988.
    [20] C. H. Wu, “Plane Anisotropic Thermoelasticity”, Journal of Applied Mechanics,” Vol. 51, pp. 724-726, 1984.
    [21] P. P. L. Matos, R. M. McMeeking, P. G. Charalambides and M. D. Drory, “ A method for calculating stress intensities in bimaterial fracture,” International Journal of Fracture, Vol. 40, pp. 235-254 , 1989.
    [22] W. T. Chow and S. N. Atluri, “Finite element calculation of stress intensity factors for interfacial crack using virtual crack closure integral,” Computational Mechanical Engineering, vol. 16, pp. 417-425, 1995.
    [23] C. T. Sun and W. Qian, “The use of finite extension strain energy release rates in fracture of interfacial cracks,” International Journal of Solids and Structures, Vol. 34, pp. 2595-2609, 1997.
    [24] A. Agrawal and A. M. Karlsson, “Obtaining mode mixity for a bimaterial interface crack using the virtual crack closure technique,” International Journal of Fracture, Vol. 141, pp. 75-98, 2006.
    [25] C. T. Sun and W. Qian, “Methods for calculating stress intensity factors for interfacial cracks between two orthotropic solids,” International Journal of Solids and Structures, Vol. 35, pp. 3317-3330, 1998.
    [26] C. T. Sun and W. Qian, “Calculation of stress intensity factors for interlaminar cracks in composite laminates,” Composite Science and Technology, Vol. 57, pp. 637-650, 1997.
    [27] C. Bjerken and C. Persson, “A numerical method for calculating stress intensity factors for interface cracks in bimaterials,” Engineering Fracture Mechanics, Vol. 68, pp. 235-246, 2001.
    [28] M. Comninou, “An overview of interface cracks,” Engineering Fracture Mechanics, Vol. 37, pp. 197-208, 1990.
    [29] K. S. Venkatesha, B. Dattaguru and T. S. Ramamurthy, “Finite element analysis of an interface crack with large crack-tip contact zones,” Engineering Fracture Mechanics , Vol. 54, pp. 847-860, 1996.
    [30] W. Qian and C.T. Sun, “ A frictional interfacial crack under combined shear and
    compression,”Composite Science and Technology, Vol. 58, pp. 1753-1761, 1998.
    [31] J. Lee and H. Gao, “A generalized comninou contact model for interface cracks in anisotropic elastic solids ,” International Journal of Fracture, Vol. 67, pp. 53-68, 1994.
    [32] T. C. T. Ting, Anisotropic Elasticity ; Theory and Applications ,Oxford University Press, Inc, 1996.
    [33] D. M. Barnett and J. Lothe , “ Synthesis of the sextic and the integral formalism for dislocations, Greens function and surfaces waves in anisotropic elastic solids,” Phys. Norv, Vol. 7, pp. 13-19, 1973.
    [34] C. Dongye and T.C.T. Ting, “Explicit expressions of Barnett-Lothe tensors and their associated tensors for orthotropic materials,” Quarterly of Applied Mathematics, Vol. 47, pp. 723-734, 1989.
    [35] J. Dundurs and A. K. Gautesen, “The interface crack under combined loading,” ASME Journal of Applied Mechanics, Vol. 55, pp. 581-586, 1988.
    [36] K. S. Venkatesha, B. Dattaguru and T. S. Ramamurthy, “Finite element analysis of an interface crack with large crack-tip contact zones,” Engineering Fracture Mechanics, Vol. 54, pp. 847-860, 1996.
    [37] M. K. Kassir and A. M. Bregman, “The stress intensity factor for a penny-shaped crack between two dissimilar materials,” Journal of Applied Mathematics and Mechanics, Vol. 39, pp. 308-310, 1972.
    [38] C. Hwu, “Explicit solutions for collinear interface crack problems,” Int. J. solids st, Vol. 30, No. 3, pp. 301-312, 1993.

    下載圖示 校內:2013-08-23公開
    校外:2013-08-23公開
    QR CODE