簡易檢索 / 詳目顯示

研究生: 吳松晏
Wu, Song-Yen
論文名稱: 水庫三角洲受異重流及抬升水位影響之研究
Study of reservoir deltas in response to density currents and rising water level
指導教授: 賴悅仁
Lai, Yueh-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 93
中文關鍵詞: 異重流三角洲模型實驗水庫淤砂
外文關鍵詞: Hyperpycnal flow, Delta, Small-scale experiments, Reservoir sedimentation
相關次數: 點閱:172下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當河川挾帶大量土砂流入湖泊或水庫時,河川之含砂濃度會高於湖泊或水庫,進而潛入水庫底床,形成高密度異重流(hyperpycnal flow)。河流所挾帶的粗顆粒泥砂則會在河川與水庫水位線之交界處(shoreline)形成三角洲。Lai and Capart (2007;2009)曾提出異重流三角洲(hyperpycnal delta)具有自我相似(self-similarity)之實驗與理論分析。Muto and Steel (1992)及Muto (2001)曾提出在固定之水砂條件下,下游水位穩定抬升時,吉爾伯特三角洲(Gilbert delta)具有自體產生向陸撤退 (autoretreat)之現象,當三角洲成長初期shoreline會向下游推進,隨後停止向前轉而向上游後退。然而少有研究指出在水庫水位穩定抬升之條件下異重流三角洲是否也有相同現象。本研究之目的為透過小尺度模型實驗探究下游水位抬升對異重流三角洲之影響,觀測(1)三角洲之形貌、(2)河川-水面交點及(3)岩盤沖積層之交點(bedrock-alluvial transition)隨時間之演化過程。實驗中採用鹽水做為異重流(ρ_in=1.2 g⁄ml),在上游提供穩定輸砂量(Q_s)及輸水量(Q_w),維持固定底床坡度(S_b),並控制下游水位以固定速率抬升(V_w),分別控制各個參數比較分析。實驗透過縮時攝影(Time-lapse photograph)每5秒紀錄下三角洲之發展過程,並以數位影像處理定量測量出三角洲之底床高程隨時間之變化。實驗結果顯示在不同抬升速率下,異重流三角洲皆會出現autoretreat之現象,並在三角洲前緣(deltaic foreset)產生侵蝕,此現象與Lai and Capart(2008)一致。推測此侵蝕現象能沿著水庫底床產生水下之河道,讓河川之泥砂能快速經由此通道運移至庫底。

    Hyperpycnal flows, a kind of density currents, appear when a sediment laden river submergs into a lake or a reservoir. Then these density currents leads the depositions at lake shore to form hyperpycnal deltas. Muto and Steel (1992) and Muto (2001) reported that Gilbert delta exists “autoretreat”, an autogeneic process for delta evolution in response to rising water level. They also showed that shoreline will retreat after a relatively brief period of delta progradation. However, little reserch have addressed whether hyperpycnal deltas exist autoretreat under a steadily rising water level. In this study, we use small-scale experiments to examine this process, and measured (1) delta morphology, (2) shoreline trajectory and (3) bedrock-alluvial transition. Upstream, we provided constant sediment (Q_s) and inflow (Q_in)(ρ_in=1.2 g⁄〖cm〗^3 ) supplies to investigate hyperpycnal deltas in response to different water rising speed (V_w) with a constant bed slope (S_b). We use time-lapse photograph to record the delta evolution every 5 seconds. Our results confirm that hyperpycnal deltas exist autoretreat with different rising water speeds. Moreover, most of the runs appear erosion along deltaic foreset. This observation also in agreement with Lai and Capart (2008). We speculated that this phenomenon can produce a subaqueous channel, so that sediment from the river can be quickly transported through this channel to deep reservoir.

    摘要 i 誌謝 x 表目錄 xiii 圖目錄 xiv 一、 緒論 1 1-1 Gilbert三角洲與異重流三角洲 1 1-2 異重流三角洲之現地資料 3 1-2-1 Squamish 7 1-3 三角洲自體向陸撤退(autoretreat)現象 8 1-3-1 Autoretreat物理現象 11 二、實驗 13 2-1 實驗方法 13 2-1-1實驗設備及配置 13 2-1-2 砂材、異重流 20 2-1-3實驗組數及各參數控制 22 2-1-4 實驗步驟 24 2-1-5 問題與解決方案 26 2-2 實驗紀錄及數位影像量測方法 27 2-2-1 間隔攝影 27 2-2-2 尺度轉換及原點設定 28 2-2-3 數位影像處理 29 三、實驗成果與討論 30 3-1現象觀察及描述 30 3-1-1 Gilbert三角洲與異重流三角洲 30 3-1-2變動水位對異重流三角洲之影響 31 3-1-3實驗現象描述 33 3-1-4實驗組數篩選 41 3-2三角洲底床形貌 46 3-3 Shoreline及bedrock-alluvial transition隨時間空間變化之軌跡 51 3-4 Qw/Qs與無因次化shoreline軌跡之關係 55 3-4-1 異重流三角洲之Maximum advance point及Recurrence point 57 3-4-2 異重流三角洲之Autobreak point 58 3-4-3 物理意義 66 3-5 Sb與無因次化shoreline軌跡之關係 68 3-6 Vw與無因次化shoreline軌跡之關係 71 四、數值模擬 74 4-1 模式介紹 74 4-1-1 模式建立 74 4-1-2 模式驗證 76 4-2模式的限制與應用 78 五、結論及建議 84 5-1結論 84 5-2未來研究建議 85 參考文獻 86

    1. Adams, E.W., W. Schlager, and F.S. Anselmetti (2001), Morphology and curvature of delta slopes in Swiss lakes : lessons for the interpretation of clinoforms in seismic data, Sedimentology, 48, 661-679.
    2. Bellal, M., B. Spinewine, C. Savary, and Y. Zech (2003), Morphological evolution of steep-sloped river beds in the presence of a hydraulic jump: Experimental study, Proc. XXX IAHR Congress, Thessaloniki, Greece, vol. C-II, p. 133-140.
    3. Bellal, M., C. Savary, and Y. Zech (2005), Morphological evolution of steep-sloped river beds in the presence of a hydraulic jump: Numerical and experimental analysis, Proc. XXXI IAHR Congress, Seoul, South Korea, p. 1522-1533.
    4. Bureau of Reclamation (1947), Lake Mead density currents investigations, Vol. 1-2, 1937-1940, Vol. 3, 1940-1946.
    5. Clarke, J. E. H., C. R. V. Marques, and D. Pratomo (2014), Imaging active mass-wasting and sediment flows on a fjord delta, Squamish, British Columbia, in Submarine Mass Movements and Their Consequences, edited, pp. 249-260, Springer.
    6. Clarke, J. H., S. Brucker, J. Muggah, T. Hamilton, D. Cartwright, I. Church, and P. Kuus (2012), Temporal progression and spatial extent of mass wasting events on the Squamish prodelta slope, paper presented at 11th International Symposium on Landslides, Conference Proceedings, Banff, June 2012.
    7. Clarke, J. E. H., S. Brucker, J. Muggah, I. Church, D. Cartwright, P. Kuus, T. Hamilton, D. Pratomo, and B. Eisan (2012), The Squamish ProDelta: monitoring active landslides and turbidity currents, paper presented at Canadian Hydrographic Conference 2012, Proceedings.
    8. Dadson, S. J., N. Hovius, H. Chen, W. B. Dade, M.-L. Hsieh, S. D. Willett, J.-C. Hu, M.-J. Horng, M.-C. Chen, and C. P. Stark (2003), Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426(6967), 648-651.
    9. Fan, J., and G.L. Morris (1992), Reservoir sedimentation I: Delta and density current deposits, J. Hydraul. Eng., 118(3), 354-369.
    10. Grover, N.C., and C.S. Howard (1937), The passage of turbid water through Lake Mead, Transactions ASCE, Paper No. 1994, 720-732.
    11. Ippen, A. T., and D. R. Harleman (1952), Steady-state characteristics of subsurface flow, paper presented at Gravity Waves.
    12. Kassem, A., and J. Imran (2001), Simulation of turbid underflows generated by the plunging of a river, Geology, 29(7), 655-658.
    13. Kenyon, P.M., and D.L. Turcotte (1985), Morphology of a delta prograding by bulk sediment transport, Geol. Soc. Amer. Bull., 96, 1457-1465.
    14. Kim, W., and T. Muto (2007), Autogenic response of alluvial-bedrock transition to base-level variation: Experiment and theory, Journal of Geophysical Research-Earth Surface, 112(F3).
    15. Kim, W., A. Dai, T. Muto, and G. Parker (2009), Delta progradation driven by an advancing sediment source: Coupled theory and experiment describing the evolution of elongated deltas, Water Resources Research, 45.
    16. Kim, W., C. Paola, V. R. Voller, and J. B. Swenson (2006), Experimental measurement of the relative importance of controls on shoreline migration, Journal of Sedimentary Research, 76(2), 270-283.
    17. Kim, Y., W. Kim, D. Cheong, T. Muto, and D. R. Pyles (2013), Piping coarse-grained sediment to a deep water fan through a shelf-edge delta bypass channel: Tank experiments, Journal of Geophysical Research-Earth Surface, 118(4), 2279-2291.
    18. Kleinhans, M. G. (2005), Autogenic cyclicity of foreset sorting in experimental Gilbert-type deltas, Sedimentary Geology, 181(3), 215-224.
    19. Kostic, S., and G. Parker (2003a), Progradational sand-mud deltas in lakes and reservoirs. Part 1. Theory and numerical modeling, Journal of Hydraulic Research, 41(2), 127-140.
    20. Kostic, S., and G. Parker (2003b), Progradational sand-mud deltas in lakes and reservoirs. Part 2. Experiment and numerical simulation, Journal of Hydraulic Research, 41(2), 141-152.
    21. Kostic, S., G. Parker, and J. G. Marr (2002), Role of turbidity currents in setting the foreset slope of clinoforms prograding into standing fresh water, Journal of Sedimentary Research, 72(3), 353-362.
    22. Kubo, Y. s., J. P. Syvitski, E. W. Hutton, and C. Paola (2005), Advance and application of the stratigraphic simulation model 2D-SedFlux: From tank experiment to geological scale simulation, Sedimentary Geology, 178(3), 187-195.
    23. Lai, S. Y. J. (2006), Self-similar delta formation by hyperpycnal flows: Theory and experiment, National Taiwan University, Taipei, Master thesis.
    24. Lai, S. Y. J. (2010), Morphodynamics of coevolving fluvial and hyperpycnal valleys, Ph. D. thesis, Grad. Inst. Of Civ. Eng., Natl. Taiwan Univ., Taipei.
    25. Lai, S. Y., and H. Capart (2007), Two‐diffusion description of hyperpycnal deltas, Journal of Geophysical Research: Earth Surface (2003–2012), 112(F3).
    26. Lai, S. Y., and H. Capart (2008), Response of hyperpycnal deltas to a steady rise in base level, paper presented at 5th iahr symposium on river, coastal and estuarine morphodynamics.
    27. Lai, S. Y., and H. Capart (2009), Reservoir infill by hyperpycnal deltas over bedrock, Geophysical Research Letters, 36(8).
    28. Lee, H.-Y., and W.-S. Yu (1997), Experimental study of reservoir turbidity current, J. Hydraul. Eng., 123(6), 520-528.
    29. Lorenzo-Trueba, J., V. R. Voller, and C. Paola (2013), A geometric model for the dynamics of a fluvially dominated deltaic system under base-level change, Computers & Geosciences, 53, 39-47.
    30. Michon, X., J. Goddet, and R. Bonnefille (1955), Etude théorique et expérimentale des courants de densité, Laboratoire national d'hydraulique.
    31. Milliman, J. D., and S. J. Kao (2005), Hyperpycnal discharge of fluvial sediment to the ocean: Impact of Super‐Typhoon Herb (1996) on Taiwanese rivers, The Journal of geology, 113(5), 503-516.
    32. Morris, G. L., and J. Fan (1998), Reservoir sedimentation handbook: design and management of dams, reservoirs, and watersheds for sustainable use, McGraw Hill Professional.
    33. Muto, T. (2001), Shoreline autoretreat substantiated in flume experiments, Journal of Sedimentary Research, 71(2), 246-254.
    34. Muto, T., and R. J. Steel (1992), Retreat of the front in a prograding delta, Geology, 20(11), 967.
    35. Muto, T., and R. J. Steel (2001), Autostepping during the transgressive growth of deltas: Results from flume experiments, Geology, 29(9), 771.
    36. Muto, T., and R. J. Steel (2004), Autogenic response of fluvial deltas to steady sea-level fall: Implications from flume-tank experiments, Geology, 32(5), 401.
    37. Muto, T., and J. B. Swenson (2005), Large-scale fluvial grade as a nonequilibrium state in linked depositional systems: Theory and experiment, Journal of Geophysical Research-Earth Surface, 110(F3).
    38. Muto, T., and J. B. Swenson (2006), Autogenic attainment of large-scale alluvial grade with steady sea-level fall: An analog tank-flume experiment, Geology, 34(3), 161.
    39. Muto, T., and H. Okada (1991), A comment on modelling the paleogeography of confined and unconfined marine Gilbert-type deltas, Cuadernos de Geología Ibérica, 15, 139-162.
    40. Paola, C., P.L. Heller, and C.L. Angevine (1992), The large-scale dynamics of grain-size variations in alluvial basins, Basin Research, 4(2), 73-90.
    41. Parker, G. (2004),1D Sediment Transport Morphodynamics With Applications to Rivers and Turbidity Currents, Natl. Cent. for Earth Surf. Dyn., Minneapolis, Minn.
    42. Parker, G., and T. Muto (2003), 1D numerical model of delta response to rising sea level, Third International Association of Hydraulic Research Symposium on River, Coastal and Estuarine Morphodynamics, Barcelona, Proceedings, p. 558-570.
    43. Parker, G., Akamatsu, Y., Muto, T. and Dietrich, W. (2004), Modeling the effect of rising sea level on river deltas and long profiles of rivers. Proceedings, International Conference on Civil and Environmental Engineering ICCEE-2004,Hiroshima University, Higashi-Hiroshima, Japan, 27–28 July, pp. 1–11.
    44. Parker, G., M. Garcia, Y. Fukushima, and W. Yu (1987), Experiments on turbidity currents over an erodible bed, Journal of Hydraulic Research, 25(1), 123-147.
    45. Powell, E. J., W. Kim, and T. Muto (2012), Varying discharge controls on timescales of autogenic storage and release processes in fluvio-deltaic environments: Tank experiments, Journal of Geophysical Research-Earth Surface, 117.
    46. Smith, W.O., C.P. Vetter, and G.B. Cummings (1960), Comprehensive survey of sedimentation in Lake Mead, 1948-1949, U.S. Geol. Survey Prof. Paper, 295, 253 p.
    47. Swenson, J. B., and T. Muto (2007), Response of coastal plain rivers to falling relative sea-level: allogenic controls on the aggradational phase, Sedimentology, 54(1), 207-221.
    48. Swenson, J., V. Voller, C. Paola, G. Parker, and J. Marr (2000), Fluvio-deltaic sedimentation: A generalized Stefan problem, European Journal of Applied Mathematics, 11(05), 433-452.
    49. Syvitski, J. P., and E. W. Hutton (2001), 2D SEDFLUX 1.0 C:: an advanced process-response numerical model for the fill of marine sedimentary basins, Computers & Geosciences, 27(6), 731-753.
    50. Syvrrski, J., and J. Alcott (1993), GRAIN2: predictions of particle size seaward of river mouths, Computers & Geosciences, 19(3), 399-446.
    51. Talling, P. J., J. Allin, D. A. Armitage, R. W. Arnott, M. J. Cartigny, M. A. Clare, F. Felletti, J. A. Covault, S. Girardclos, and E. Hansen (2015), Key future directions for research on turbidity currents and their deposits, Journal of Sedimentary Research, 85(2), 153-169.
    52. Tomer, A., and T. Muto (2010), Emergence and drowning of fluviodeltaic systems during steady rise of sea level: Implication from geometrical modeling and tank experiments, Journal of the Sedimentological Society of Japan, 69(2), 63-72.
    53. Tomer, A., T. Muto, and W. Kim (2011), Autogenic Hiatus in Fluviodeltaic Successions: Geometrical Modeling and Physical Experiments, Journal of Sedimentary Research, 81(3-4), 207-217.
    54. Toniolo, H., and J. Schultz (2005), Experiments on sediment trap efficiency in reservoirs, Lakes and Reservoirs, 10, 13-24.
    55. Toniolo, H., G. Parker, and V. Voller (2007), Role of ponded turbidity currents in reservoir trap efficiency, Journal of Hydraulic Engineering, 133(6), 579-595.
    56. Turmel, D., J. Locat, and G. Parker (2015), Morphological evolution of a well‐constrained, subaerial–subaqueous source to sink system: Wabush Lake, Sedimentology, 62(6), 1636-1664.
    57. Turmel, D., G. Parker, and J. Locat (2015), Evolution of an anthropic source-to-sink system: Wabush Lake, Earth-Science Reviews, 151, 227-243.
    58. Voller, V., J. Swenson, and C. Paola (2004), An analytical solution for a Stefan problem with variable latent heat, International Journal of Heat and Mass Transfer, 47(24), 5387-5390.
    59. Yu, W., H. Lee, and S. Hsu (2000), Experimental study on delta formation in a reservoir, J. of the Chinese Inst. Of Civ. And Hyd. Engr, 12(1), 171-177.
    60. 吳松晏、賴悅仁* (2015), 水庫三角洲受異重流及抬升水位影響之實驗研究,第22屆水利工程研討會論文集, 374-380

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE