| 研究生: |
李鎮修 Lee, Cheng-Hsiu |
|---|---|
| 論文名稱: |
局部圓錐形凹槽對管路彎頭在循環負載下行為之有限元素分析 Finite Element Analysis of the Behavior of the Local Conical Groove on Pipe Elbows under Cyclic Load |
| 指導教授: |
潘文峰
Peng, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 局部圓錐形凹槽 、管路彎頭 、SUS316不鏽鋼 、循環負載 、有限元素ANSYS分析 |
| 外文關鍵詞: | Local conical groove, Elbow, SUS316 stainless steel, Cyclic load, Finite element ANSYS analysis |
| 相關次數: | 點閱:103 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用以有限元素ANSYS模擬局部圓錐形凹槽對管路彎頭在循環負載下行為的影響,材料上選用許多科技廠房在運輸原料管路上常使用的SUS316不鏽鋼,並以局部圓錐形凹槽的深度變化與夾角變化為模擬條件,探討循環負載下局部圓錐形凹槽尖端的應力與應變。在凹槽深度方面,本研究考慮由0.1 mm開始,以每0.1 mm開始增加至0.5 mm,共五種深度變化,而在凹槽夾角方面,本研究考慮由15°開始,以每7.5°增加至82.5°,共十種角度變化,以深度變化與角度變化的組合共計包含50種模型。由模擬的結果可以分為彈性結果與塑性結果兩部分進行說明。首先彈性結果部分,在彈性循環負載凹槽深度變化條件下可以發現,夾角越小的凹槽,其最大應力與最大應變的變化就越大。而在彈性循環負載凹槽夾角變化條件下可以發現,深度越深的凹槽,其最大應力與最大應變的變化就越大。此外在彈性循環負載條件下可以進一步發現,對於最大應力與最大應變的變化來說,凹槽夾角較凹槽深度的影響大。接下來塑性結果部分,在塑性循環負載凹槽深度變化條件下,夾角越小的凹槽,其最大應力與最大應變的變化就越大。而在塑性循環負載凹槽夾角變化條件下,深度越深的凹槽,其最大應力與最大應變的變化就越大。此外相較於彈性負載條件,在塑性循環負載條件下,凹槽深度與凹槽夾角對於最大應力與最大應變變化的影響都不大。
In this study, ANSYS is used to simulate the behavior of the local conical groove on pipe elbows under cyclic load. The material is SUS316 stainless steel, which is commonly used in the pipelines of transportation in many factories. The depth changes and the angle changes of the local conical groove are the simulation conditions. The depth changes and the angle changes are the simulation conditions to discuss the stress and strain at the tip of the local conical groove under cyclic load. The depth changes of the local conical groove starts from 0.1 mm and increasing every 0.1 mm to 0.5 mm, a total of five depth changes. And the angle changes of the local conical groove starts from 15° and increasing every 7.5° up to 82.5°, there are total ten angle changes. There are total fifty models. The simulation results can be divided into two parts: elastic and plastic results. In the elastic results, it can be found that the smaller angle of the groove leads to the greater change in the maximum stress and the maximum strain under the condition of changing the groove depth and the elastic cyclic load. Under the condition of changing the angle of the groove and the elastic cyclic load, it can also be found that the deeper groove leads to the greater change in the maximum stress and the maximum strain. In addition, under the elastic cyclic load, it can be further found that changing angle of the groove has a greater influence than changing the depth of the groove. In the next part of the results, under the condition of changing the depth of the groove and the plastic cyclic load, the smaller angle of the groove leads to the greater change in the maximum stress and the maximum strain. Under the condition of changing the angle of the groove and the plastic cyclic load, the deeper groove leads to the greater change in the maximum stress and the maximum strain. In addition, compared with the result of elastic load, changing the groove depth and changing the groove angle have little influence on the maximum stress and maximum strain changes than that under the plastic cyclic load.
1. K. L. Lee, C. Y. Hung and W. F. Pan, Variation of ovalization for sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).
2. K. L. Lee, C. M. Hsu and W. F. Pan, The influence of diameter-to-thickness ratios on the response and collapse of sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 28, No. 3, pp. 461-468 (2012).
3. K. L. Lee, C. M. Hsu and W. F. Pan, Response of sharp-notched circular tubes under bending creep and relaxation, Mechanical Engineering Journal, Vol. 1, No. 2, pp. 1-14 (2014).
4. C. C. Chung, K. L. Lee and W. F. Pan, Collapse of sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending, International Journal of Structural Stability and Dynamics, Vol. 16, No. 7, 1550035 [24 pages] (2016).
5. C. C. Chung, K. L. Lee and W. F. Pan, Finite element analysis on the response of 6061-T6 aluminum alloy tubes with a local sharp cut under cyclic bending, Journal of Vibroengineering, Vol. 18, No. 7, pp. 4276-4284 (2016).
6. K. L. Lee, K. H. Chang and W. F. Pan, Effect of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending, International Journal of Structural Stability and Dynamics, Vol. 18, No. 7, 1850090 [23 pages] (2018).
7. 劉政傑,管路彎頭內側裂縫疲勞成長之數值模擬,虎尾科技大學飛機工程系學位論文(2018)。
8. M. Guagliano and L. Vergani, Experimental and numerical analysis of sub-surface cracks in railway wheels, Engineering Fracture Mechanics, pp. 255-269 (2005).
9. J. A. R. Duran, J. T. P. Castro and J. C. P. Filho, Fatigue crack propagation prediction by cyclic plasticity damage accumulation models, Fatigue & Fracure of Engineering Materials & Structures, pp. 137-150 (2003).
10. L. H. Chou, Y. C. Chiou, C. C. Wu and Y. J. Huang, Predictions of stress-stain curve and fatigue life for AISI 316 stainless steel in cyclic straining, Journal of Marine Science and Technology, Vol. 24, No. 3, pp. 426-433 (2016).
11. MatWeb, 316 stainless steel, http://www.matweb.com/search/DataSheet. aspx?MatGUID=50f320bd1daf4fa7965448c30d3114ad&ckck=1.
12. ANSYS 2020 R2 Egineering Data資料庫內建材料資訊。