| 研究生: |
張珈銘 Zhang, Jia-Ming |
|---|---|
| 論文名稱: |
地動訊號於河川監測之應用:以愛玉子溪及曾文水庫為例 Fluvial monitoring using ground motion signals: Case studies in the Aiyuzi River and Zengwun Reservoir |
| 指導教授: |
林冠瑋
Lin, Guan-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 河川監測 、地震儀 、愛玉子溪 、曾文水庫 、河川作用 |
| 外文關鍵詞: | Fluvial monitoring, Seismometer, Aiyuzi River, Zengwun Reservoir, Fluvial processes |
| 相關次數: | 點閱:99 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
河川作用包含了侵蝕、搬運及堆積,對於地形的發育有著重大的影響。有關河川作用的研究不只能夠瞭解地表地質作用的運作機制,還能作為水資源規劃及土砂防災等相關領域之參考。河川作用的研究主要是透過水文觀測數據來解釋其原理及機制,常見的水文觀測涵蓋水位、表面流速及沉積物濃度等。然而,水文觀測站多分布於河川中、下游,對上游的河道觀測較少,而且傳統水文觀測的時間解析度較低、安裝與維護的成本較高,促使新型態的水文觀測技術開始發展。過去二十年,環境地震學蓬勃發展,地動訊號分析被大量使用於環境監測,並且具有一定的成效,本研究將探討地震儀於河川監測應用之可行性。
研究期間地震儀分別架設於愛玉子溪及曾文水庫下游河道,用於記錄河川作用產生之地動訊號,結果顯示無論時間域或頻率域的地動訊號均與水文觀測數據之間存在良好的正相關。河床載運移及河水牽引河床為洪水期間主要的震動來源,此外河川作用的特徵頻率集中於頻率段10至50赫茲。相較於河水牽引河床,河床載運移的特徵頻率較低。根據不同的河床載搬運方式,產生的地動訊號具有不同的性質,而河川作用產生的地動訊號可能是透過雷利波的模式傳遞。本研究結果充分展現地震儀觀測應用於河川監測之潛力,提供新穎的河川監測觀測方式。
Fluvial processes include erosion, transport of sediment, and deposition. Investigating fluvial processes can not only help us to understand the mechanisms of surface processes, but also provide essential information on management of water resources and geohazards. In the past two decades, application of seismometers to environmental monitoring developed rapidly. In this study, the potential of fluvial monitoring using seismometers is evaluated. During the study periods, seismometers were deployed at the river bank beside the Aiyuzi River and the outlet channel of the Zengwun Reservoir, respectively. Good positive correlations are observed between hydrological data and seismic signals both in the time domain and frequency domain. In addition, bedload transport and water traction on river bed are supposed as the dominant seismic sources during flood periods. The characteristic frequency band of seismic signals induced by fluvial processes ranges between 10 Hz and 50 Hz. The frequency band of signals induced by bedload transport is lower than that induced by water traction on river bed. Seismic waves induced by bedload transport have different properties based on transport mode. Furthermore, seismic waves generated by fluvial processes may propagate through Rayleigh Wave. Finally, the results in the study show that seismometers can be a robust tool for fluvial monitoring.
[1] Adrian, R. J. (1986). Multi-point optical measurements of simultaneous vectors in unsteady flow—a review. International journal of heat and fluid flow, 7(2), 127-145.
[2] Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual review of fluid mechanics, 23(1), 261-304.
[3] Abanco Martínez de Arenzana, C., Hurlimann Ziegler, M., & Moya Sánchez, J. (2014). Analysis of the ground vibration generated by debris flows and other torrential processes at the Rebaixader monitoring site (Central Pyrenees, Spain). Natural hazards and earth system sciences, 14(4), 929-943.
[4] Best, J. L. (1988). Sediment transport and bed morphology at river channel confluences. Sedimentology, 35(3), 481-498.
[5] Burtin, A., Bollinger, L., Vergne, J., Cattin, R., & Nábělek, J. L. (2008). Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics. Journal of Geophysical Research: Solid Earth, 113(B5).
[6] Bunte, K., Abt, S. R., Swingle, K. W., Cenderelli, D. A., & Schneider, J. M. (2013). Critical Shields values in coarse‐bedded steep streams. Water Resources Research, 49(11), 7427-7447.
[7] Barrière, J., Oth, A., Hostache, R., & Krein, A. (2015). Bed load transport monitoring using seismic observations in a low‐gradient rural gravel bed stream. Geophysical Research Letters, 42(7), 2294-2301.
[8] Burtin, A., Hovius, N., & Turowski, J. M. (2016). Seismic monitoring of torrential and fluvial processes. Earth Surface Dynamics, 4(2).
[9] Creutin, J. D., Muste, M., Bradley, A. A., Kim, S. C., & Kruger, A. (2003). River gauging using PIV techniques: a proof of concept experiment on the Iowa River. Journal of Hydrology, 277(3-4), 182-194.
[10] Ching, K. E., Hsieh, M. L., Johnson, K. M., Chen, K. H., Rau, R. J., & Yang, M. (2011). Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. Journal of Geophysical Research: Solid Earth, 116(B8).
[11] Cook, K. L., Turowski, J. M., & Hovius, N. (2013). A demonstration of the importance of bedload transport for fluvial bedrock erosion and knickpoint propagation. Earth Surface Processes and Landforms, 38(7), 683-695.
[12] Chao, W. A., Wu, Y. M., Zhao, L., Tsai, V. C., & Chen, C. H. (2015). Seismologically determined bedload flux during the typhoon season. Scientific reports, 5, 8261.
[13] Coviello, V., Capra, L., Vázquez, R., & Márquez-Ramírez, V. H. (2018). Seismic characterization of hyperconcentrated flows in a volcanic environment. Earth Surface Processes and Landforms, 43(10), 2219-2231.
[14] Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., & Lin, J. C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648.
[15] Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, T. C., Milliman, J., & Stark, C. P. (2004). Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 32(8), 733-736.
[16] De Plaen, R. S., Lecocq, T., Caudron, C., Ferrazzini, V., & Francis, O. (2016). Single‐station monitoring of volcanoes using seismic ambient noise. Geophysical Research Letters, 43(16), 8511-8518.
[17] Emmett, W. W., Leopold, L. B., & Myrick, R. M. (1983). Some characteristics of fluvial processes in rivers. US Geological Survey Circular, 953, 38.
[18] Fujita, I., Muste, M., & Kruger, A. (1998). Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of hydraulic Research, 36(3), 397-414.
[19] Fulton, J., & Ostrowski, J. (2008). Measuring real-time streamflow using emerging technologies: radar, hydroacoustics, and the probability concept. Journal of Hydrology, 357(1-2), 1-10.
[20] Fan, J. C., Liu, C. H., Yang, C. H., & Huang, H. Y. (2009). A laboratory study on groundwater quality and mass movement occurrence. Environmental geology, 57(7), 1509-1519.
[21] Gimbert, F., Tsai, V. C., & Lamb, M. P. (2014). A physical model for seismic noise generation by turbulent flow in rivers. Journal of Geophysical Research: Earth Surface, 119(10), 2209-2238.
[22] Gore, J. A., & Banning, J. (2017). Discharge measurements and streamflow analysis. In Methods in Stream Ecology, Volume 1(pp. 49-70). Academic Press.
[23] Ho, C. S. (1988). An introduction to the geology of Taiwan: explanatory text of the geologic map of Taiwan. Ministry of Economic Affairs. ROC (164 pp.).
[24] Huang, C. J., Yin, H. Y., Chen, C. Y., Yeh, C. H., & Wang, C. L. (2007). Ground vibrations produced by rock motions and debris flows. Journal of Geophysical Research: Earth Surface, 112(F2).
[25] Hsu, L., Finnegan, N. J., & Brodsky, E. E. (2011). A seismic signature of river bedload transport during storm events. Geophysical Research Letters, 38(13).
[26] Huang, H. H., Lin, F. C., Schmandt, B., Farrell, J., Smith, R. B., & Tsai, V. C. (2015). The Yellowstone magmatic system from the mantle plume to the upper crust. Science, 348(6236), 773-776.
[27] Kao, S. J., Lee, T. Y., & Milliman, J. D. (2005). Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 16(3), 653.
[28] Leopold, L. B., & Emmett, W. W. (1977). 1976 bedload measurements, East Fork River, Wyoming. Proceedings of the National Academy of Sciences, 74(7), 2644-2648.
[29] Lin, G. W., Chen, H., Hovius, N., Horng, M. J., Dadson, S., Meunier, P., & Lines, M. (2008). Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 33(9), 1354-1373.
[30] Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., & Camenen, B. (2010). Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers. Journal of hydrology, 394(1-2), 42-52.
[31] Lin, C. H., Kumagai, H., Ando, M., & Shin, T. C. (2010). Detection of landslides and submarine slumps using broadband seismic networks. Geophysical Research Letters, 37(22).
[32] Le Boursicaud, R., Pénard, L., Hauet, A., Thollet, F., & Le Coz, J. (2016). Gauging extreme floods on YouTube: application of LSPIV to home movies for the post‐event determination of stream discharges. Hydrological Processes, 30(1), 90-105.
[33] Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. In IAHSR 2nd meeting, Stockholm, appendix 2. IAHR.
[34] Muste, M., Fujita, I., & Hauet, A. (2008). Large‐scale particle image velocimetry for measurements in riverine environments. Water resources research, 44(4).
[35] Miller, J. R., Lord, M. L., & Germanoski, D. (2011). Meadow sensitivity to natural and anthropogenic disturbance. Geomorphology, Hydrology, and Ecology of Great Basin Meadow Complexes: Implications for Management and Restoration. United States Forest Service Gen. Tech. Rep. RMRS-GTR-258, 68-84.
[36] Muste, M., Ho, H. C., & Kim, D. (2011). Considerations on direct stream flow measurements using video imagery: Outlook and research needs. Journal of Hydro-environment Research, 5(4), 289-300.
[37] Mainsant, G., Larose, E., Brönnimann, C., Jongmans, D., Michoud, C., & Jaboyedoff, M. (2012). Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. Journal of Geophysical Research: Earth Surface, 117(F1).
[38] Perkins, R. J., & Hunt, J. C. R. (1989). Particle tracking in turbulent flows. In Advances in Turbulence 2 (pp. 286-291). Springer, Berlin, Heidelberg.
[39] Piton, G., & Recking, A. (2017). The concept of travelling bedload and its consequences for bedload computation in mountain streams. Earth Surface Processes and Landforms, 42(10), 1505-1519.
[40] Rickenmann, D. (1997). Sediment transport in Swiss torrents. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 22(10), 937-951.
[41] Russell, A. J., Knudsen, O., Fay, H., Marren, P. M., Heinz, J., & Tronicke, J. (2001). Morphology and sedimentology of a giant supraglacial, ice-walled, jökulhlaup channel, Skeiðarárjökull, Iceland: implications for esker genesis. Global and Planetary Change, 28(1-4), 193-216.
[42] Rehmel, M. (2007). Application of acoustic Doppler velocimeters for streamflow measurements. Journal of Hydraulic Engineering, 133(12), 1433-1438.
[43] Rickenmann, D., & McArdell, B. W. (2007). Continuous measurement of sediment transport in the Erlenbach stream using piezoelectric bedload impact sensors. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 32(9), 1362-1378.
[44] Rickenmann, D., Heimann, F. U. M., Turowski, J. M., Bieler, C., Böckli, M., & Badoux, A. (2014). Simulation of bedload transport in the Hasliaare River with increased sediment input. In River Flow (pp. 2273-2281).
[45] Roth, D. L., Finnegan, N. J., Brodsky, E. E., Cook, K. L., Stark, C. P., & Wang, H. W. (2014). Migration of a coarse fluvial sediment pulse detected by hysteresis in bedload generated seismic waves. Earth and Planetary Science Letters, 404, 144-153.
[46] Ross, Z. E., & Ben-Zion, Y. (2014). Automatic picking of direct P, S seismic phases and fault zone head waves. Geophysical Journal International, 199(1), 368-381.
[47] Roth, D. L., Brodsky, E. E., Finnegan, N. J., Rickenmann, D., Turowski, J. M., & Badoux, A. (2016). Bed load sediment transport inferred from seismic signals near a river. Journal of Geophysical Research: Earth Surface, 121(4), 725-747.
[48] Roth, D. L., Finnegan, N. J., Brodsky, E. E., Rickenmann, D., Turowski, J. M., Badoux, A., & Gimbert, F. (2017). Bed load transport and boundary roughness changes as competing causes of hysteresis in the relationship between river discharge and seismic amplitude recorded near a steep mountain stream. Journal of Geophysical Research: Earth Surface, 122(5), 1182-1200.
[49] Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., & Fehler, M. C. (2005). Extracting time‐domain Green's function estimates from ambient seismic noise. Geophysical Research Letters, 32(3).
[50] Schmandt, B., Aster, R. C., Scherler, D., Tsai, V. C., & Karlstrom, K. (2013). Multiple fluvial processes detected by riverside seismic and infrasound monitoring of a controlled flood in the Grand Canyon. Geophysical Research Letters, 40(18), 4858-4863.
[51] Schneider, J. M., Turowski, J. M., Rickenmann, D., Hegglin, R., Arrigo, S., Mao, L., & Kirchner, J. W. (2014). Scaling relationships between bed load volumes, transport distances, and stream power in steep mountain channels. Journal of Geophysical Research: Earth Surface, 119(3), 533-549.
[52] Tsai, V. C., Minchew, B., Lamb, M. P., & Ampuero, J. P. (2012). A physical model for seismic noise generation from sediment transport in rivers. Geophysical Research Letters, 39(2).
[53] Turowski, J. M., Badoux, A., & Rickenmann, D. (2011). Start and end of bedload transport in gravel‐bed streams. Geophysical Research Letters, 38(4).
[54] Uchida, T., Sakurai, W., Iuchi, T., Izumiyama, H., Borgatti, L., Marcato, G., & Pasuto, A. (2018). Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring. Geomorphology, 306, 198-209.
[55] Wang, W. L., Wang, T. T., Su, J. J., Lin, C. H., Seng, C. R., & Huang, T. H. (2001). Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake. Tunnelling and underground space technology, 16(3), 133-150.
[56] Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics, 15(2), 70-73.
[57] Yin, H. Y., Huang, C. J., Fang, Y. M., Lee, B. J., & Chou, T. Y. (2010, April). The present development of debris flow monitoring technology in Taiwan. In Proceedings of the Interpraevent (pp. 992-1000).