| 研究生: |
楊超麟 Yang, Chao-Lin |
|---|---|
| 論文名稱: |
GPS高程變化與地下水位高程之間關係—以屏東平原為例 The Correlation between Changes in GPS Height Variation and the Elevation of Groundwater Table: Study on Pingtung Plain |
| 指導教授: |
饒瑞鈞
Rau, Ruey-Juin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系碩士在職專班 Department of Earth Sciences (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | GPS 、地層下陷 |
| 外文關鍵詞: | GPS, land subsidence |
| 相關次數: | 點閱:111 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「超抽地下水造成土地下陷,是永不復返的變化」。屏東沿海地區因農漁業長期超量抽取地下水,在供需失衡情況下,地層不斷下陷,該區從民國61年至民國96年的累積沉降量已達3.24 m,為經濟部水利署水資源局公告台灣嚴重地層下陷地區。近年來沿海地區地下水超抽雖稍趨緩,但工商及民生用水卻逐年增加,抽水不再集中養殖業,而抽水地區亦不再集中沿海地區,全區抽水量有稍微增加,下陷區域有向內陸延伸之趨勢。
本研究蒐集2005年至2009年屏東平原中央氣象局(CWB)及國土測繪中心(NLS)所提供之七座GPS 衛星追蹤站高程資料,及經濟部水利署公告的2005~2009年水文年報上的地下水位高程及日累積雨量資料,由七座GPS 衛星追蹤站高程資料經回歸分析後所得方程式其斜率均為負值,可知地層下陷的情形持續發生。監測地層沉降多使用水準測量或地下水井進行,因GPS 衛星定位系統運用於「監測」方面之應用的精度及技術日趨成熟:故選擇屏東平原,利用GPS高程、地下水位高程及累積雨量分析及探討三者間的關係,期望能找出預測之模式,以供政府部門決策及水資源利用規劃之考量。
研究成果發現,GPS高程變化速率與地下水位高程變化速率存在乾溼季節性變化關係,其中以乾季之變化較冬季顯著,經資料分析得到兩者在乾季之決定係數R2扇頂為0.7651、與相關r為0.86975,而扇頂區的乾季平均R2為0.7651,意即地下水位在乾季時的水位高度可以用GPS高程來決定的機率達76.51%,關係數r為0.86975介於0.80-1.00之間為極高度正相關,透過此結論之預估:扇頂區的迴歸方程式所求得的GPS高程速率的平均值可用以預估地下水位的變化速率。可以提早對乾季水資源分配作規劃,並加以管制地下水之抽取量,使地下水資源得以永續利用。
“Overdrafting of groundwater is the cause for land subsidence, for the consequence is irreversible.” Along the seashore of Pintung, partly because of the long-term overdrafting of groundwater and partly because of losing a balance between supply and demand, land subsidence had continued to occur. The area had sunk amounted to 3.24 meters in terms of land height from 1972 to 2007, which was referred as the most severe subsidence zone in Taiwan by the Water Conservation Bureau of the Ministry of Economic Affairs. The severity along the seashore had alleviated recently; however, the needs for industrial, commercial, and household use of water had persisted over years. Overdrafting of groundwater was centralized neither in fishery nor in areas of seashores; instead, the volume of drafting of water increased citywide and the coverage of land subsidence tended to move inland.
In the study, data were collected from those of seven GPS stations, of which were released by Central Weather Bureau (CWB) and National Land Surveying (NLS). We intend to trace height variations in the Pintung Plain from 2005 to 2009, and analyze the annual report of the elevation of water table and daily amount of accumulation of precipitation during the span of years ranging from 2005 to 2009 by the Water Resource Bureau of the Ministry of Economic Affairs. Data from those of seven GPS were retrieved and further analyzed, and the result indicated that the slope of the equations was presented as negative, from which land subsidence had continued to occur over the period of time. Considering the technological advance and subtlety of GPS in monitoring, the researcher opted for the Pintung Plain as the subject and explored the correlation among GPS height variations, groundwater level table, and the amount of accumulation of precipitation, and was in hope of finding an expected model that will enable the authority concerned to take administrative policies and measures in making better use of water resources into consideration.
Our result showed that the changes between the rate of GPS height variations and that of groundwater level table indicated the correlation of the changes of the existence of dry and wet seasons. The significance of changes manifested itself more in dry seasons than in wet seasons. Through data analysis, we found that both reached the decisive rate R2 as 0.7651 in top alluvial fan in dry seasons and the relative coefficient rate as 0.86975, with an average rate of top alluvial fan in dry seasons being 0.7651, which proved that groundwater table was predictable and could reach the decisive rate of 76.51 on the percentage via the monitoring of GPS. The result explained that its relative coefficient rate reached 0.86975, which some point fell between 0.80 and 1.00 in the highly correlative trust interval. To conclude, the average rate of top alluvial fan in GPS height elevation can be served as an indicator for predicting the variation rate of groundwater table during dry seasons. For future implications, the authority concerned can make plans for taking measures to ration and distribute the use of water during dry seasons and for controlling the amount of drafting of underground water as ways of making resources of underground water sustainable.
中文部分
中央地質調查所,1997,屏東平原水文地質調查研究報告。
中央地調所,2002,屏東平原地下水自然補註之研究,中央地質調查所研究發
展專題 。
中央地質調查所,2006,地震地質調查及活動斷層資料庫建置計畫-活動斷層
監測系統計畫總報告。
內政部土地測量局,2005,93 年度一等水準網檢測工作報告。
江崇榮,2010,地下水位與地表高程互動機制對山區地下水之涵義,山區水源
地質與地下水資源調查技術研討會論文集,經濟部中央地質調查所,議題
二。
林真真、鄒幼涵,1990,迴歸分析。華泰書局,第39至52頁。
林朝棨,1957,臺灣地形,臺灣省文獻委員會。
柳志錫,1992,地質防災技術專題 (二) 臺灣地區之地盤下陷,財團法人工業技術研究院能源與資源研究所出版。
柳志錫、杜富麗、洪偉嘉,2006,超抽地下水引起之地層下陷問題探討,財團法人工業技術研究院能源與資源研究所。
洪偉嘉,2002,應用GPS技術監測地層下陷,地層下陷管理與對策研討會論文
集,第5-1至5-11頁。
吳善薇,2004,應用雷達干涉法在彰化縣員林地區地層下陷研究,國立中央大
學地球物理研究所碩士論文。
郭隆晨,2001,高精度GPS 衛星測量在地殼變形觀測之研究,國立交通大學
土木工程學系博士論文。
黃鎮臺、杜富麗,2002,臺灣地層下陷區的特性與防護技術探討,財團法人工
業技術研究院能源與資源研究所。
陳鴻泉,1997,臺西至麥寮水文地質之研究,國立臺灣大學地質學研究所碩士論文。
陳國華,2004,整合TWVD2001 水準及GPS 資料改進臺灣區域性大地水準面
模式以應用於GPS高程測量,國立成功大學測量及空間資訊學系博士論
文。
許惠珍,2006,地層下陷與地下水位變化特性分析之研究以北港GPS追蹤站為
例,國立中興大學水土保持學系研究所碩士學位論文。
許宏安,2009,以地理資訊系統整合建置地層資料庫與地層下陷趨勢面分析,
庫與資料趨勢面分析,私立明新科技大學營建工程與管理研究所碩士論
文。
曾清涼、儲慶美,1999,GPS 衛星測量原理與應用,成大衛星資訊研究中心
技術叢書003 號第二版,第4-2頁。
彭淼祥,2001,雲林地層下陷高程監測,測量學術發表會。
張嘉強,王天南(2004),地層下陷區GPS 高程值之季節性變化,第六屆GPS
衛星科技研討會,國立成功大學,臺南,共10 頁。
楊昆庭,2007,從水準測量資料探討臺灣西部沿海地區地層下陷之現況,國立
成功大學地球科學研究所碩士論文。
劉景聰,許整備,吳明洋,1992,在地底舞動的精靈---談地層下陷,行政院環境保護署及幼獅文化事業公司出版。
經濟部水資源局,1996,水資源政策白皮書,133頁。
經濟部水資源局,1998,臺灣地區南部區域水資源綜合發展計畫。
經濟部中央地質調查所,1999,屏東平原水文地質調查研究報告。
經濟部水資源局,2000,年度研究報告。
經濟部水資源局,2004~20008,水文年報。
經濟部水利署,地層下陷防治資訊網,http://www.water.tku.edu.tw/。
盧詩丁,1995,雲林地區水文地質特性及其演變,國立臺灣大學地質學研究所
碩士論文。
盧玉芳,2007,以雷達干涉技術監測雲林地層下陷,國立交通大學土木工程研
究所碩士論文。
饒瑞鈞、景國恩、周侑德、劉啟清,2008,精密水準觀測之資料品質及精度分
析經濟部中央地質調查所特刊第二十號,第49-62頁。
饒瑞鈞、陳鶴欽、黃偉城、曾耀賢,2009,運用 GPS 衛星定位監測彰化沿海
地區地層下陷之研究,中華民國地籍測量學會會刊,第27卷第3號,第
46-60頁。
美國地質調查局網頁,http://water.wr.usgs.gov/ogw/subsidence.html
經濟部水利署,地層下陷防治資訊網,http://www.water.tku.edu.tw/。
英文部分
Bear, J., and Corapcioglu, M. Y. ,1981, Mathematical model for regional land subsidence due to pumping: 1. Integrated aquifer subsidence equations based on vertical displacement only, Water Resources Res., 17(4), pp. 937-946.
Brockmann, E., 1996, Combination of solutions for geodetic and geodynamic applications of the Global Positioning System (GPS), Ph.D. dissertation, Astronomical Institute, University of Berne, Berne, Switzerland.
Bitelli, G., Flavio, B., and Marco, U., 2000, Levelling and GPS networks to monitor ground subsidence in the Southern Po Valley, Journal of Geodynamics, 30 pp. 355-369.
Liu, C. H., Pan,Y. W., Liao,J. J., and Hung, W. C., 2004, Estimating coefficients of volume compressibility from compression of strata and piezometric changes in a multiaquifer system in west Taiwan, Engineering Geology , 75(1), pp. 33-47.
Liu, C. W., Lin, W. S., and Cheng, L. H., 2006, Estimation of land subsidence caused by loss of smectite-interlayer water in shallow aquifer systems, Hydrogeology Journal, 14, pp. 508-525.
Meinzer, O. E., 1939, Groundwater in the United States–a summary. U.S. Geol. Survey Water-Supply Paper 836-D. pp. 157-232.
Rappleye, H. S., 1984, Manual of Leveling Computation and Adjustment, Super- sedes Coast and Geodetic Survey Special Publication No. 240, NOS/NOAA, Rockville, Maryland.
Saastamoinen, I. I., 1973, Contribution to the Theory of Atmospheric Refraction, Bulletin Géodésique, Vol. 107, pp. 13-34.
Sato, H. P., Abe, K., and Ootaki, O., 2003, GPS-measured land subsidence in Ojiya City, Niigata Prefecture, Japan, Engineering Geology, 67(3), pp. 379-390.
Shi, X., Xue, Y., Wu, J., Ye, S., Zhang, Y., Wei, Z., and Yu, Jun., 2008, Characterization of regional land subsidence in Yangtze Delta, China: the example of Su-Xi-Chang area and the city of Shanghai, Hydrogeology Journal, pp. 593–607.