| 研究生: |
吳政樑 Wu, Cheng-Liang |
|---|---|
| 論文名稱: |
非共軛高分子混摻鹽類與金屬螯合錯合物在高分子發光二極體的應用 Applications of Non-conjugated Polymer Doped with Salts and Metal Chelate Complexes in Polymer Light-emitting Diode |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 高分子發光二極體 、電子注入層 、電洞阻擋層 、聚乙烯醇 、羥乙基纖維素 、乙二胺四乙酸四鈉鹽 、酞菁銅(II)四磺酸四鈉鹽 |
| 外文關鍵詞: | Polymer light-emitting diode, Electron-injection layer, Hoe-blocking layer, Poly(vinyl alcohol), Hydroxyethyl cellulose, Ethylenediaminetetraacetic acid tetrasodium, Copper(II) phthalocyanine-tetrasulfonated acid tetrasodium salt |
| 相關次數: | 點閱:114 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高分子發光二極體(PLED)是一種載子注入的元件,基本上需要電子與電動從陰陽兩極平衡地注入,並有效地傳輸與再結合於發光層中。然而,對大部分的共軛高分子而言,電洞的注入與傳輸要較快於電子。因此,為了達到一個高效能的PLED,有效的電子注入與激子侷限在發光層中是相當需要的。在此篇研究中,我們使用了非共軛高分子(聚乙烯醇和羥乙基纖維素)作為電子注入或電洞阻擋層,成功地改善了電子的注入與載子的再結合。非共軛高分子具有極性的官能基團在主鍊或側鏈中,有助於界面偶極的形成與以濕式製程地製備。此外,我們嘗試混摻許多不同的碳酸鹽類、醋酸鹽類與金屬螯合物於此層中,可以成功地增加其電子注入的能力。
以聚乙烯醇直接作為電子注入層,其元件glass/ITO/PEDOT:PSS/HY-PPV/PVA/Al的最大亮度與最大電流效率,皆因為聚乙烯醇具有電子注入與電洞阻擋的功能而增加。此外,藉由混摻鹼金屬鹽類 (M2CO3 or CH3COOM; M: Na, K, Cs),其元件的表現又更加地提升。其提升的程度與鹽類濃度成正比。特別的是,在混摻30 wt%的鹼金屬鹽類下,元件有最好的表現 (20,214~25,163 cd/m2、5.83~6.83 cd/A)。而一些複合的效果,包括聚乙烯醇的電子注入與電洞阻擋功能、親電子鹼金屬鹽類與在表面形成良好排列的結晶,造成了這些元件效能有大幅度的改善。
以水溶性的非共軛高分子(羥乙基纖維素)取代聚乙烯醇亦可得到類似的結果,即以羥乙基纖維素混摻金屬螯合錯合物 [醋酸基團(CH3COO)2-M,乙二胺四乙酸基團EDTA-M; M: Ca2+, Mg2+]作為電子注入層,利用旋轉塗佈的方式製備元件。在這些元件之中,以使用乙二胺四乙酸基螯合金屬錯合物的元件,有最佳的表現。其最大亮度與最大電流效率是未使用任何電子注入層的七至八倍。而元件的改善則是因為螯合基團的電子貢獻,使被螯合的金屬離子有效地被還原成一“類金屬狀態”,而此狀態可作為一暫時的注入步階,有效地促進電子注入。這些結果提供了有力的證據:乙二胺四乙酸基的螯合能力,在提升元件效能方面扮演了決定性的角色。
最後,以另一個酞菁類金屬螯合錯合物[酞菁銅(II)四磺酸四鈉鹽,copper(II) phthalocyanine-tetrasulfonated acid tetrasodium salt,TS-CuPc] (12 wt%)混摻在羥乙基纖維素中,可作為一雙功能的電洞阻擋層。於元件glass/ITO/PEDOT:PSS/HY-PPV/TS-CuPc-doped HEC/LiF/Al中,大幅提高元件的最大亮度、最大電流效率與最大功率效率;由原本沒有此層的10,319 cd/m2、2.98 cd/A 和1.24 lm/W,提高至29,205 cd/m2、13.27 cd/A 和9.56 lm/W。表面與導電度的原子力顯微鏡證明了;TS-CuPc的混摻增加了此層與陰極的界面接觸面積與界面傳導度,可以克服原本羥乙基纖維素的絕緣本性,並更加地促進電子注入。所以原件效能的大幅提升,可以歸功於此雙功能電洞阻擋層有效地改善了載子平衡與再結合。
我們成功地展示了一些藉由非共軛高分子混摻鹽類與金屬螯合錯合物的方式,有效地達到改善高分子發光二極體效能的目的。這些研究的結果顯示;這些混摻的共軛高分子層可以同時達到電子注入與電洞阻擋,在企圖以全濕式製程製備的發光元件中,是相當具有潛力的材料。
Polymer light-emitting diodes (PLEDs) are carrier-injection devices, which basically require balance of hole- and electron-injection from the two electrodes, along with effective transport and recombination in the emitting layer. However, for most conjugated polymers, holes are more readily injected and transported than electrons. Therefore, effective electron injection and excition confinement in emitting layer are essential for high performance PLEDs. In this study, we used non-conjugated polymer, poly(vinyl alcohol) (PVA) and hydroxyethyl cellulose (HEC), as electron-injection or hole–blocking layer to improve electron injection and carrier recombination. Non-conjugated polymer possesses high polar functional groups in main or side chain, which facilitate interfacial dipole formation and facile fabrication by solution process. In addition, we attempted to dope this non-conjugated polymer layer with some different carbonate salts, acetate salts and metal chelate complexes, which successfully enhances its electron-injection capability.
Using neat PVA as an electron-injection layer, the maximum luminance and maximum current efficiency of the device (glass/ITO/PEDOT:PSS/HY-PPV/PVA/Al) were significantly enhanced due to promoted electron injection and hole blocking. Moreover, the device performance was further enhanced by doping the PVA with alkali metal salts (M2CO3 or CH3COOM; M: Na, K, Cs), and the enhancement is increased with increasing dopant concentration. Particularly, the PVA doped with 30 wt% alkali metal carbonates revealed the best performance (20214~25163 cd/m2, 5.83~6.83 cd/A). The synergistic effect of electro-injecting and hole-blocking PVA, electron affinitive alkali metal salts and well-aligned crystallites on layer surface gives rise to the enhancements.
Water-soluble non-conjugated polyer HEC was also applicable as electron-injection or hole–blocking layer. An electron-injection layer using HEC filled with chelate complexes [acetate group (CH3COO)2-M, ethylenediaminetetraacetic group EDTA-M; M: Ca2+, Mg2+] was fabricated by spin-coating processes. Devices based on HEC doped with EDTA-M provided the superior performance, with the maximum luminance and maximum current efficiency enhanced seven- to eight-fold approximately. This performance enhancement has been attributed to electron donation from the chelator that reduces metal cations to a “pseudo-metallic state”, enabling it to act as an intermediate step to facilitate electron injection. These results provide compelling evidence that the chelating capability of EDTA plays an essential role in enhancing performances.
Finally, another metal chelate complex copper(II) phthalocyanine-tetrasulfonated acid tetrasodium salt (TS-CuPc) was investigated. Doping 12 wt% TS-CuPc into HEC as a dual functional hole-blocking layer (df-HBL) of device (glass/ITO/PEDOT:PSS/HY-PPV/TS-CuPc-doped HEC/LiF/Al) significantly enhanced maximum luminance, maximum current and power efficiency, from 10319 cd/m2, 2.98 cd/A and 1.24 lm/W of without the df-HBL to 29205 cd/m2, 13.27 cd/A and 9.56 lm/W, respectively. Topography and conductivity AFM images show that doping TS-CuPc increases the interfacial contact area and interfacial conductivity, which can overcome the insulating nature of HEC and thus further facilitate electron injection. Enhancements in device performance have been attributed to the improved carrier balance and recombination in the presence of df-HBL.
We successfully demonstrated several effective approach to further achieve PLED performance improvements by using non-conjugated polymers doped with salts or metal chelate complexes. These results indicate that thes doped non-conjugated polymers are extremely promising materials for fully solution-processed light-emitting devices, which can simultaneously realize electron injection and hole blocking.
1. H. J. Round, Electrical World, 1907, 19, 309-310.
2. G. Destriau, J. Chem. Phys., 1936, 33, 587-625.
3. V. A. Johnson and K. Lark-Horovitz, Phys. Rev., 1947, 71, 374-375.
4. K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films, 1983, 102, 1-46.
5. A. L. Dawar and J. C. Joshi, J. Mater. Sci., 1984, 19, 1-23.
6. H. Ohnishi, Ann. Rev. Mater. Res., 1989, 19, 83-101.
7. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi and D. B. Chrisey, J. Appl. Phys., 1999, 86, 6451-6461.
8. M. Pope, H. P. Kallmann and P. Magnante, J. Chem. Phys., 1963, 38, 2042-2043.
9. W. Helfrich and W. G. Schneider, Phys. Rev. Lett., 1965, 14, 229-231.
10. W. W. Piper and F. E. Williams, Phys. Rev., 1955, 98, 1809-1813.
11. F. F. Morehead, J. Electrochem. Soc., 1960, 107, 281-287.
12. M. Sano, M. Pope and H. Kallmann, J. Chem. Phys., 1965, 43, 2920-2921.
13. M. Pope, Trans. N. Y. Acad. Sci., 1966, 29, 53-62.
14. W. G. Williams, P. L. Spong and D. J. Gibbons, J. Phys. Chem. Solids, 1972, 33, 1879-1884.
15. G. G. Roberts, M. McGinnity, W. A. Barlow and P. S. Vincett, Solid State Commun., 1979, 32, 683-686.
16. R. Nowak, A. Miniewicz, M. Samoc and J. Sworakowski, Mol. Cryst. Liquid Cryst., 1981, 72, 113-118.
17. W. Helfrich and W. G. Schneider, J. Chem. Phys., 1966, 44, 2902-2909.
18. T. Tsujimura, OLED Display Fundamentals and Applications, John Wiley & Sons, New Jersey, 2012.
19. P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, Thin Solid Films, 1982, 94, 171-183.
20. C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 913-915.
21. H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang and A. J. Heeger, J. Chem. Soc. Chem. Commun., 1977, 16, 578-580.
22. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, Phys. Rev. Lett., 1977, 39, 1098-1101.
23. R. H. Partridge, Polymer, 1983, 24, 748-754.
24. R. H. Partridge, Polymer, 1983, 24, 755-762.
25. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, Nature, 1990, 347, 539-541.
26. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund and W. R. Salaneck, Nature, 1999, 397, 121-128.
27. W. Brütting, S. Berleb and A. G. Mückl, Org. Electron., 2001, 2, 1-36.
28. D. Braun and A. J. Heeger, Appl. Phys. Lett., 1991, 58, 1982-1984.
29. D. Dini, Chem. Mat., 2005, 17, 1933-1945.
30. D. R. Baigent, R. H. Friend, A. B. Holmes and S. C. Moratti, Electronic Processes Associated with Electroluminescence in Conjugated Polymers, Springer, Tokyo, 1996.
31. J. Shinar (Eds.), Organic light-emitting devices. A Survey., Springer-Verlag, New York, 2003.
32. J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem and J. A. Goitia, J. Appl. Phys., 1996, 79, 2745-2751.
33. M. T. Bernius, M. Inbasekaran, J. O'Brien and W. S. Wu, Adv. Mater., 2000, 12, 1737-1750.
34. J. H. Kwon and R. Pode, in Organic Light Emitting Diode - Material, Process and Devices, Chapter 4, S. H. Ko (Eds.), InTech, DOI: 10.5772/18521, 2011.
35. H. Kobayashi, T. Ishida, Y. Nakato and H. Tsubomura, J. Appl. Phys., 1991, 69, 1736-1743.
36. I. Hamberg and C. G. Granqvist, J. Appl. Phys., 1986, 60, R123-R160.
37. R. B. H. Tahar, T. Ban, Y. Ohya and Y. Takahashi, J. Appl. Phys., 1998, 83, 2631-2645.
38. T. Osada, T. Kugler, P. Broms and W. R. Salaneck, Synth. Met., 1998, 96, 77-80.
39. J. S. Kim, M. Granstrom, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast and F. Cacialli, J. Appl. Phys., 1998, 84, 6859-6870.
40. D. J. Milliron, I. G. Hill, C. Shen, A. Kahn and J. Schwartz, J. Appl. Phys., 2000, 87, 572-576.
41. S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett., 1996, 69, 2160-2162.
42. T. Matsushima, Y. Kinoshita and H. Murata, Appl. Phys. Lett., 2007, 91, 253504.
43. C. E. Small, S.-W. Tsang, J. Kido, S. K. So and F. So, Adv. Funct. Mater., 2012, 22, 3261-3266.
44. J.-H. Lee, D.-S. Leem and J.-J. Kim, Org. Electron., 2008, 9, 805-808.
45. C. Ganzorig and M. Fujihira, Appl. Phys. Lett., 2000, 77, 4211-4213.
46. Y.-X. Li, X.-T. Tao, F.-J. Wang, T. He, L.-L. Zhang and M.-H. Jiang, Chem. Phys. Lett., 2009, 470, 264-268.
47. F.-I. Wu, P.-I. Shih, M.-C. Yuan, A. K. Dixit, C.-F. Shu, Z.-M. Chung and E. W.-G. Diau, J. Mater. Chem., 2005, 15, 4753-4760.
48. L. E. Lyons, Mol. Cryst. Liquid Cryst., 1989, 171, 53-67.
49. D. D. C. Bradley, Synth. Met., 1993, 54, 401-415.
50. T. Earmme and S. A. Jenekhe, Appl. Phys. Lett., 2013, 102, 233305.
51. T. Earmme and S. A. Jenekhe, Adv. Funct. Mater., 2012, 22, 5126-5136.
52. W. L. Ma, P. K. Iyer, X. Gong, B. Liu, D. Moses, G. C. Bazan and A. J. Heeger, Adv. Mater., 2005, 17, 274-277.
53. F. Huang, H. Wu and Y. Cao, Chem. Soc. Rev., 2010, 39, 2500-2521.
54. Y. Divayana, B. J. Chen, X. W. Sun and K. S. Sarma, Appl. Phys. Lett., 2006, 88, 083508.
55. Z. Liu, J. Zou, J. Chen, L. Huang, J. Peng and Y. Cao, Polymer, 2008, 49, 1604-1610.
56. J.-D. You, S.-R. Tseng, H.-F. Meng, F.-W. Yen, I. F. Lin and S.-F. Horng, Org. Electron., 2009, 10, 1610-1614.
57. B. Zhang, G. Tan, C. S. Lam, B. Yao, C. L. Ho, L. Liu, Z. Xie, W. Y. Wong, J. Ding and L. Wang, Adv Mater, 2012, 24, 1873-1877.
58. B. Zhang, L. Liu, G. Tan, B. Yao, C.-L. Ho, S. Wang, J. Ding, Z. Xie, W.-Y. Wong and L. Wang, J. Mater. Chem. C, 2013, 1, 4933-1939.
59. J. Chen, C. Shi, Q. Fu, F. Zhao, Y. Hu, Y. Feng and D. Ma, J. Mater. Chem., 2012, 22, 5164-5170.
60. Y. Tian, J. H. Peng, X. J. Xu and L. D. Li, RSC Adv., 2015, 5, 98075-98079.
61. C. C. Hsiao, A. E. Hsiao and S. A. Chen, Adv. Mater., 2008, 20, 1982-1988.
62. Y. Zhao, L. Duan, D. Zhang, L. Hou, J. Qiao, L. Wang and Y. Qiu, Appl. Phys. Lett., 2012, 100, 083304.
63. L. P. Lu, D. Kabra and R. H. Friend, Adv. Funct. Mater., 2012, 22, 4165-4171.
64. Y. J. Pu, N. Morishita, T. Chiba, S. Ohisa, M. Igarashi, A. Masuhara and J. Kido, ACS Appl. Mater. Interfaces, 2015, 7, 25373-25377.
65. X. Sun, D.-Y. Zhou, L. Qiu, L.-S. Liao and F. Yan, J. Phys. Chem. C, 2011, 115, 2433-2438.
66. K. Cho, S. W. Cho, P. E. Jeon, H. Lee, C.-N. Whang, K. Jeong, S. J. Kang and Y. Yi, Appl. Phys. Lett., 2008, 92, 093304.
67. H. J. Bolink, E. Coronado, D. Repetto and M. Sessolo, Appl. Phys. Lett., 2007, 91, 223501.
68. M. Vasilopoulou, L. C. Palilis, D. G. Georgiadou, A. M. Douvas, P. Argitis, S. Kennou, L. Sygellou, G. Papadimitropoulos, I. Kostis, N. A. Stathopoulos and D. Davazoglou, Adv. Funct. Mater., 2011, 21, 1489-1497.
69. L. C. Palilis, M. Uchida and Z. H. Kafafi, IEEE J. Sel. Top. Quantum Electron., 2004, 10, 79-88.
70. H. Sasabe, D. Tanaka, D. Yokoyama, T. Chiba, Y.-J. Pu, K.-i. Nakayama, M. Yokoyama and J. Kido, Adv. Funct. Mater., 2011, 21, 336-342.
71. H. Lee, G. Cho, S. Woo, S. Nam, J. Jeong, H. Kim and Y. Kim, RSC Adv., 2012, 2, 8762-8767.
72. T. Chiba, Y.-J. Pu and J. Kido, J. Mater. Chem. C, 2015, 3, 11567-11576.
73. J. Huang, G. Li, E. Wu, Q. Xu and Y. Yang, Adv. Mater., 2006, 18, 114-117.
74. G. A. H. Wetzelaer, A. Najafi, R. J. P. Kist, M. Kuik and P. W. M. Blom, Appl. Phys. Lett., 2013, 102, 053301.
75. T. Chiba, Y. J. Pu, M. Hirasawa, A. Masuhara, H. Sasabe and J. Kido, ACS Appl. Mater. Interfaces, 2012, 4, 6104-6108.
76. R. Yang, H. Wu, Y. Cao and G. C. Bazan, J. Am. Chem. Soc., 2006, 128, 14422-14423.
77. Y. Jin, G. C. Bazan, A. J. Heeger, J. Y. Kim and K. Lee, Appl. Phys. Lett., 2008, 93, 123304.
78. X. Guan, K. Zhang, F. Huang, G. C. Bazan and Y. Cao, Adv. Funct. Mater., 2012, 22, 2846-2854.
79. J. Fang, B. H. Wallikewitz, F. Gao, G. Tu, C. Muller, G. Pace, R. H. Friend and W. T. Huck, J. Am. Chem. Soc., 2011, 133, 683-685.
80. C. Duan, L. Wang, K. Zhang, X. Guan and F. Huang, Adv. Mater., 2011, 23, 1665-1669.
81. A. Fruth, M. Klapper and K. Müllen, Macromolecules, 2010, 43, 467-472.
82. F. Huang, Y. Zhang, M. S. Liu and A. K. Y. Jen, Adv. Funct. Mater., 2009, 19, 2457-2466.
83. F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi and A. K. Y. Jen, Adv. Mater., 2009, 21, 361-365.
84. H. B. Wu, F. Huang, Y. Q. Mo, W. Yang, D. L. Wang, J. B. Peng and Y. Cao, Adv. Mater., 2004, 16, 1826-1830.
85. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su and Y. Cao, Adv. Mater., 2011, 23, 4636-4643.
86. C. Hoven, R. Yang, A. Garcia, A. J. Heeger, T. Q. Nguyen and G. C. Bazan, J. Am. Chem. Soc., 2007, 129, 10976-10977.
87. A. Garcia, R. C. Bakus, 2nd, P. Zalar, C. V. Hoven, J. Z. Brzezinski and T. Q. Nguyen, J. Am. Chem. Soc., 2011, 133, 2492-2498.
88. K. Morii, M. Ishida, T. Takashima, T. Shimoda, Q. Wang, M. K. Nazeeruddin and M. Grätzel, Appl. Phys. Lett., 2006, 89, 183510.
89. D. Kabra, M. H. Song, B. Wenger, R. H. Friend and H. J. Snaith, Adv. Mater., 2008, 20, 3447-3452.
90. C. Min, C. S. Shi, W. J. Zhang, T. G. Jiu, J. S. Chen, D. G. Ma and J. F. Fang, Angew. Chem.-Int. Edit., 2013, 52, 3417-3420.
91. X. H. Ouyang, R. X. Peng, L. Ai, X. Y. Zhang and Z. Y. Ge, Nat. Photonics, 2015, 9, 520-524.
92. F. Zhang, M. Ceder and O. Inganas, Adv. Mater., 2007, 19, 1835-1838.
93. Y. Zhou, F. Li, S. Barrau, W. Tian, O. Inganas and F. Zhang, Sol. Energy Mater. Sol. Cells, 2009, 93, 497-500.
94. T.-H. Lee, J.-C.-A. Huang, G. L. v. Pakhomov, T.-F. Guo, T.-C. Wen, Y.-S. Huang, C.-C. Tsou, C.-T. Chung, Y.-C. Lin and Y.-J. Hsu, Adv. Funct. Mater., 2008, 18, 3036-3042.
95. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu and C. T. Chung, Appl. Phys. Lett., 2006, 88, 113501.
96. M. Zhang, S. Hofle, J. Czolk, A. Mertens and A. Colsmann, Nanoscale, 2015, 7, 20009-20014.
97. S. Hofle, C. Bernhard, M. Bruns, C. Kubel, T. Scherer, U. Lemmer and A. Colsmann, ACS Appl. Mater. Interfaces, 2015, 7, 8132-8137.
98. X. Yang, R. Wang, C. Fan, G. Li, Z. Xiong and G. E. Jabbour, Org. Electron., 2014, 15, 2387-2394.
99. Y.-H. Kim, T.-H. Han, H. Cho, S.-Y. Min, C.-L. Lee and T.-W. Lee, Adv. Funct. Mater., 2014, 24, 3808-3814.
100. H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, K. Hwang do and W. K. Choi, Sci Rep, 2015, 5, 8968.
101. J. S. Wu, H. H. Lu, W. C. Hung, G. H. Lin and S. A. Chen, Appl. Phys. Lett., 2010, 97, 023304.
102. F. Huang, H. B. Wu, D. Wang, W. Yang and Y. Cao, Chem. Mat., 2004, 16, 708-716.
103. C. V. Hoven, A. Garcia, G. C. Bazan and T.-Q. Nguyen, Adv. Mater., 2008, 20, 3793-3810.
104. H. Ma, H.-L. Yip, F. Huang and A. K. Y. Jen, Adv. Funct. Mater., 2010, 20, 1371-1388.
105. Y.-F. Chang, C.-Y. Chen, F.-T. Luo, Y.-C. Chao, H.-F. Meng, H.-W. Zan, H.-W. Lin, S.-F. Horng, T.-C. Chao, H.-C. Yeh and M.-R. Tseng, Org. Electron., 2012, 13, 388-393.
106. D. A. Skoog, F. J. Holler and T. A. Nieman, in Principles of Instrumental Analysis, 5th ed., Chapter 15, Brooks/Cole Pub Co., Boston, 1998.
107. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151-154.
108. C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys., 2001, 90, 5048-5051.
109. J. Cornil, D. Beljonne, D. A. dosSantos and J. L. Bredas, Synth. Met., 1996, 76, 101-104.
110. H. S. Woo, O. Lhost, S. C. Graham, D. D. C. Bradley, R. H. Friend, C. Quattrocchi, J. L. Bredas, R. Schenk and K. Mullen, Synth. Met., 1993, 59, 13-28.
111. B. Tian, G. Zerbi, R. Schenk and K. Mullen, J. Chem. Phys., 1991, 95, 3191-3197.
112. Y. Z. Lee, X. W. Chen, M. C. Chen, S. A. Chen, J. H. Hsu and W. Fann, Appl. Phys. Lett., 2001, 79, 308-310.
113. V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 2nd Ed., Wiley-VCH, Weinhein, 2004.
114. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd Ed., Oxford University Press, New York, 1982.
115. R. S. Knox, J. Phys. Chem., 1994, 98, 7270-7273.
116. A. Yassar, G. Horowitz, P. Valat, V. Wintgens, M. Hmyene, F. Deloffre, P. Srivastava, P. Lang and F. Garnier, J. Phys. Chem., 1995, 99, 9155-9159.
117. M. S. Dresselhaus and G. Dresselhaus, Adv. Phys., 1981, 30, 139-326.
118. E. M. Conwell, J. Perlstein and S. Shaik, Phys. Rev. B, 1996, 54, R2308-R2310.
119. G. Zeng, W. L. Yu, S. J. Chua and W. Huang, Macromolecules, 2002, 35, 6907-6914.
120. K. L. Paik, N. S. Baek, H. K. Kim, J. H. Lee and Y. Lee, Macromolecules, 2002, 35, 6782-6791.
121. Z. H. Kafafi, Organic Electroluminescence., US Naval Research Lab, Washington DC, 2005.
122. K. Müllen and U. Scherf (Eds.), Organic Light Emitting Devices: Synthesis, Properties and Applications, Wiley-VCH, Weinheim, 2006.
123. S. Tokito, T. Tsutsui, S. Saito and R. Tanaka, Polymer Communications, 1986, 27, 333-335.
124. K. C. Kao and W. Hwang, Electrical Transport in Solids, with Particular Reference to Organic Semiconductors, Pergamon Press, London, 1981.
125. S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.
126. F.-C. Chiu, Adv. Mater. Sci. Eng., 2014, 2014, 1-18.
127. C. H. Kim, O. Yaghmazadeh, D. Tondelier, Y. B. Jeong, Y. Bonnassieux and G. Horowitz, J. Appl. Phys., 2011, 109, 083710.
128. N. I. Craciun, J. J. Brondijk and P. W. M. Blom, Phys. Rev. B, 2008, 77, 035206.
129. H. Kumar, P. Kumar, R. Bhardwaj, G. D. Sharma and P. Venkatesu, Phys. Scr., 2012, 85, 035806.
130. H. H. Poole, Philos. Mag., 1916, 32, 112-129.
131. J. Frenkel, Phys. Rev., 1938, 54, 647-648.
132. D. M. Pai, J. Chem. Phys., 1970, 52, 2285-2291.
133. D. S. Chung, I. Kang, Y. H. Kim and S. K. Kwon, Phys. Chem. Chem. Phys., 2013, 15, 14777-14782.
134. D. F. Barbe, J. Phys. D-Appl. Phys., 1971, 4, 1812-1815.
135. P. N. Murgatroyd, J. Phys. D-Appl. Phys., 1970, 3, 151-156.
136. P. W. M. Blom, M. J. M. deJong and M. G. vanMunster, Phys. Rev. B, 1997, 55, R656-R659.
137. M. Giulianini, E. R. Waclawik, J. M. Bell and N. Motta, J. Appl. Phys., 2010, 108, 014512.
138. P. W. M. Blom, M. J. M. de Jong and J. J. M. Vleggaar, Appl. Phys. Lett., 1996, 68, 3308-3310.
139. M. E. Brown, Introduction to Thermal Analysis : Techniques and Applications, Chapman and Hall Ltd, London, 1988.
140. C. H. Spink, Methods Cell Biol., 2008, 84, 115-141.
141. D. K. Gosser, , Cyclic Voltammetry−Simulation and Analysis of Reaction Mechanisms, Wiley-VCH, New York, 1993.
142. S.-H. Oh, D. Vak, S.-I. Na, T.-W. Lee and D.-Y. Kim, Adv. Mater., 2008, 20, 1624-1629.
143. S. Stolz, M. Scherer, E. Mankel, R. Lovrincic, J. Schinke, W. Kowalsky, W. Jaegermann, U. Lemmer, N. Mechau and G. Hernandez-Sosa, ACS Appl. Mater. Interfaces, 2014, 6, 6616-6622.
144. H.-H. Lu, Y.-S. Ma, N.-J. Yang, G.-H. Lin, Y.-C. Wu and S.-A. Chen, J. Am. Chem. Soc., 2011, 133, 9634-9637.
145. See: http://www.tascon.eu/media/en/analytical_methods/TAS-TN-XPS-en.pdf, for Tascon publication.
146. T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang and X. Gong, Energy Environ. Sci., 2012, 5, 8208-8214.
147. See: https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/SurfaceAnalysis /AFM/ApplicationNotes/Simultaneous_Electrical_and_Mechanical_Property_Mapping_at_the_Nanoscale_with_PeakForce_TUNA_AFM_AN132.pdf, for Bruker application note #132.
148. C.-L. Wu, C.-Y. Lin and Y. Chen, J. Mater. Sci., 2016, 51, 7286-7299.
149. H. Wu, L. Ying, W. Yang and Y. Cao, Chem. Soc. Rev., 2009, 38, 3391-3400.
150. T. Yamamoto, H. Kajii and Y. Ohmori, Org. Electron., 2014, 15, 1077-1082.
151. G. G. Malliaras and J. C. Scott, J. Appl. Phys., 1998, 83, 5399-5403.
152. J. H. Lu, Z. H. Ma, B. Meng, D. Sui, B. H. Zhang, Z. Y. Xie, X. B. Jing, F. S. Wang, J. Q. Ding and L. X. Wang, Opt. Express, 2011, 19, A1241-A1249.
153. I. D. Parker, Y. Cao and C. Y. Yang, J. Appl. Phys., 1999, 85, 2441-2447.
154. T. W. Lee, M. G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J. J. Park, T. L. Choi, J. H. Park and B. D. Chin, Adv. Funct. Mater., 2009, 19, 1863-1868.
155. F. So and D. Kondakov, Adv. Mater., 2010, 22, 3762-3777.
156. J. Y. Zou, H. L. Yip, Y. Zhang, Y. Gao, S. C. Chien, K. O'Malley, C. C. Chueh, H. Z. Chen and A. K. Y. Jen, Adv. Funct. Mater., 2012, 22, 2804-2811.
157. Y. H. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn and B. Kippelen, Science, 2012, 336, 327-332.
158. C. Zhong, C. Duan, F. Huang, H. Wu and Y. Cao, Chem. Mat., 2011, 23, 326-340.
159. P. D. Ye, G. D. Wilk, E. E. Tois and J. J. Wang, Appl. Phys. Lett., 2005, 87, 013501.
160. P. Zalar, D. Kamkar, R. Naik, F. Ouchen, J. G. Grote, G. C. Bazan and T.-Q. Nguyen, J. Am. Chem. Soc., 2011, 133, 11010-11013.
161. Y. Zhang, P. Zalar, C. Kim, S. Collins, G. C. Bazan and T.-Q. Nguyen, Adv. Mater., 2012, 24, 4255-4260.
162. L. S. Hung, C. W. Tang and M. G. Mason, Appl. Phys. Lett., 1997, 70, 152-154.
163. J. S. Huang, Z. Y. Xie, K. X. Yang, C. N. Li, S. Y. Liu, Y. Q. Li, Y. Wang and J. C. Shen, Opt. Quantum Electron., 1999, 31, 1227-1233.
164. J. Yoon, J. J. Kim, T. W. Lee and O. O. Park, Appl. Phys. Lett., 2000, 76, 2152-2154.
165. C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu and Y. Yang, Appl. Phys. Lett., 2005, 87, 241121.
166. C. I. Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu and C. C. Wu, Appl. Phys. Lett., 2006, 88, 152104.
167. S. Sax, N. Rugen-Penkalla, A. Neuhold, S. Schuh, E. Zojer, E. J. W. List and K. Mullen, Adv. Mater., 2010, 22, 2087-2091.
168. Y.-H. Niu, H. Ma, Q. Xu and A. K. Y. Jen, Appl. Phys. Lett., 2005, 86, 083504.
169. Y. H. Chen, Z. F. Lei, X. W. Zhang, S. Q. Chu, W. D. Xu, B. Liu, C. J. Ou, L. H. Xie, Q. L. Fan, W. Y. Lai and W. Huang, J. Lumines., 2016, 170, 50-55.
170. T. Earmme and S. A. Jenekhe, J. Mater. Chem., 2012, 22, 4660-4668.
171. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada and M. Tsuchida, IEEE Trans. Electron Devices, 1997, 44, 1245-1248.
172. C. Ganzorig, K. Suga and M. Fujihira, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 2001, 85, 140-143.
173. T.-Q. Nguyen and B. J. Schwartz, J. Chem. Phys., 2002, 116, 8198-8208.
174. N. Corcoran, A. C. Arias, J. S. Kim, J. D. MacKenzie and R. H. Friend, Appl. Phys. Lett., 2003, 82, 299-301.
175. Y. E. Ha, M. Y. Jo, J. Park, Y. C. Kang, S. J. Moon and J. H. Kim, Synth. Met., 2014, 187, 113-117.
176. W.-D. Xu, W.-Y. Lai, Q. Hu, X.-Y. Teng, X.-W. Zhang and W. Huang, Polym. Chem., 2014, 5, 2942-2950.
177. D. Wang, Y. Wu, R. Bi, H. Zhang and D. Zhao, J. Mater. Chem. C, 2015, 3, 3922-3927.
178. F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu and A. K. Y. Jen, Adv. Mater., 2007, 19, 2010-2014.
179. X. Xu, B. Han, J. Chen, J. Peng, H. Wu and Y. Cao, Macromolecules, 2011, 44, 4204-4212.
180. C. Duan, K. Zhang, X. Guan, C. Zhong, H. Xie, F. Huang, J. Chen, J. Peng and Y. Cao, Chem. Sci., 2013, 4, 1298-1307.
181. B. H. Lee, I. H. Jung, H. Y. Woo, H.-K. Shim, G. Kim and K. Lee, Adv. Funct. Mater., 2014, 24, 1100-1108.
182. H. Xiao, J. Miao, J. Cao, W. Yang, H. Wu and Y. Cao, Org. Electron., 2014, 15, 758-774.
183. B. K. Money and J. Swenson, Macromolecules, 2013, 46, 6949-6954.
184. W. Wang, X. Z. Qu, A. I. Gray, L. Tetley and I. F. Uchegbu, Macromolecules, 2004, 37, 9114-9122.
185. J. H. Cho, H. S. Lee, Y. Jang, Y. Lee, S. K. Kwon, J. Jang and K. Cho, Appl. Phys. Lett., 2006, 89, 083508.
186. M. Asada, N. Jiang, L. Sendogdular, J. Sokolov, M. K. Endoh, T. Koga, M. Fukuto, L. Yang, B. Akgun, M. Dimitriou and S. Satija, Soft Matter, 2014, 10, 6392-6403.
187. D. G. Georgiadou, L. C. Palilis, M. Vasilopoulou, G. Pistolis, D. Dimotikali and P. Argitis, J. Mater. Chem., 2011, 21, 9296-9301.
188. S. Tang, A. Sandstrom, J. Fang and L. Edman, J. Am. Chem. Soc., 2012, 134, 14050-14055.
189. C.-S. Wu, H.-A. Lu, Y.-J. Lin and Y. Chen, J. Mater. Chem. C, 2013, 1, 6850-6860.
190. C.-S. Wu, H.-A. Lu, C.-P. Chen, T.-F. Guo and Y. Chen, Org. Biomol. Chem., 2014, 12, 1430-1439.
191. A. Babel and S. A. Jenekhe, J. Am. Chem. Soc., 2003, 125, 13656-13657.
192. T. W. Lee, H. C. Lee and O. O. Park, Appl. Phys. Lett., 2002, 81, 214-216.
193. S. Liu, C. Zhong, S. Dong, J. Zhang, X. Huang, C. Zhou, J. Lu, L. Ying, L. Wang, F. Huang and Y. Cao, Org. Electron., 2014, 15, 850-857.
194. H. Arora and R. Mukherjee, New J. Chem., 2010, 34, 2357-2365.
195. D. A. Skoog, D. M. West, F. J. Holle and S. R. Crouch, Fundamentals of Analytical Chemistry, 9th Ed., Brooks Cole, Canada, 2013.
196. B. E. Douglas and D. J. Radanovic, Coord. Chem. Rev., 1993, 128, 139-165.
197. E. M. Cranton, A Textbook on EDTA Chelation Therapy, 2nd Ed., Hampton Roads Publishing, United States, 2001.
198. T. Schneppensieper, S. Seibig, A. Zahl, P. Tregloan and R. van Eldik, Inorg. Chem., 2001, 40, 3670-3676.
199. C.-S. Wu, H.-C. Su and Y. Chen, Org. Biomol. Chem., 2014, 12, 5682-5690.
200. C. J. Powell, J. Electron Spectrosc. Relat., 2012, 185, 1-3.
201. H. Seyama and M. Soma, J. Chem. Soc. Faraday Trans. 1, 1984, 80, 237-248.
202. E. Magni and G. A. Somorjai, Surf. Sci., 1995, 341, L1078-L1084.
203. P. Steiner, H. Hochst and S. Hufner, Z. Phys. B-Condens. Mat., 1978, 30, 129-143.
204. H. Estrade-Szwarckopf, B. Rousseau, C. Herold and P. Lagrange, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A-Mol. Cryst. Liq. Cryst., 1998, 310, 231-236.
205. S. H. Jin, M. Y. Kim, J. Y. Kim, K. Lee and Y. S. Gal, J. Am. Chem. Soc., 2004, 126, 2474-2480.
206. D. J. Pinner, R. H. Friend and N. Tessler, J. Appl. Phys., 1999, 86, 5116.
207. T.-W. Lee, O. O. Park, L.-M. Do, T. Zyung, T. Ahn and H.-K. Shim, J. Appl. Phys., 2001, 90, 2128.
208. H. Zamani Siboni and H. Aziz, Org. Electron., 2011, 12, 2056-2060.
209. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh and Y. S. Fu, Appl. Phys. Lett., 2005, 87, 013504.
210. M. V. M. Rao, T.-S. Huang, Y.-K. Su, M.-L. Tu, C.-Y. Huang and S.-S. Wu, Nano-Micro Lett., 2010, 2, 49-52.
211. H. C. Chen, S. W. Lin, J. M. Jiang, Y. W. Su and K. H. Wei, ACS Appl. Mater. Interfaces, 2015, 7, 6273-6281.
212. Z. Tan, W. Zhang, Z. Zhang, D. Qian, Y. Huang, J. Hou and Y. Li, Adv. Mater., 2012, 24, 1476-1481.
213. R. Bechara, J. Petersen, V. Gernigon, P. Lévêque, T. Heiser, V. Toniazzo, D. Ruch and M. Michel, Sol. Energy Mater. Sol. Cells, 2012, 98, 482-485.
214. S. Schumann, R. A. Hatton and T. S. Jones, J. Phys. Chem. C, 2011, 115, 4916-4921.
215. M. Raïssi, L. Vignau, E. Cloutet and B. Ratier, Org. Electron., 2015, 21, 86-91.
216. Y.-L. Deng, Y.-M. Xie, L. Zhang, Z.-K. Wang and L.-S. Liao, J. Mater. Chem. C, 2015, 3, 6218-6223.
217. B.-P. Jiang, L.-F. Hu, D.-J. Wang, S.-C. Ji, X.-C. Shen and H. Liang, J. Mater. Chem. B, 2014, 2, 7141-7148.
218. M. Raïssi, L. Vignau and B. Ratier, Org. Electron., 2014, 15, 913-919.
219. M. Raïssi, S. Leroy-Lhez and B. Ratier, Org. Electron., 2016, 37, 183-189.
220. X.-F. Zhang, Q. Xi and J. Zhao, J. Mater. Chem., 2010, 20, 6726-6733.
221. L. Zhang, J. Jiang and M. Liu, Chin. Sci. Bull., 2012, 57, 4322-4327.
222. H.-L. Yip and A. K. Y. Jen, Energy Environ. Sci., 2012, 5, 5994-6011.
223. K. S. Yook and J. Y. Lee, Adv. Mater., 2014, 26, 4218-4233.
224. G. Garcia-Belmonte, J. M. Montero, Y. Ayyad-Limonge, E. M. Barea, J. Bisquert and H. J. Bolink, Curr. Appl. Phys., 2009, 9, 414-416.
225. K. Manabe, W. Hu, M. Matsumura and H. Naito, J. Appl. Phys., 2003, 94, 2024-2027.
226. R. Steyrleuthner, S. Bange and D. Neher, J. Appl. Phys., 2009, 105, 064509.
227. F. Dumur, L. Beouch, S. Peralta, G. Wantz, F. Goubard and D. Gigmes, Org. Electron., 2015, 25, 21-30.
228. S. M. Tadayyon, H. M. Grandin, K. Griffiths, P. R. Norton, H. Aziz and Z. D. Popovic, Org. Electron., 2004, 5, 157-166.
229. C.-H. Liao, M.-T. Lee, C.-H. Tsai and C. H. Chen, Appl. Phys. Lett., 2005, 86, 203507.