簡易檢索 / 詳目顯示

研究生: 蘇芮帝
Serutti, Seybett
論文名稱: 新型鋼筋混凝土柱Pivot遲滯模型參數最佳化研究
Parameters Optimization in the Pivot Hysteresis Model for Seismic Performance of New Reinforced Concrete Columns
指導教授: 劉光晏
Liu, Kuang-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 128
中文關鍵詞: 新型鋼筋混凝土Pivot遲滯模型能量耗散TEASPAETABS
外文關鍵詞: New Reinforced Concrete (New RC), Pivot Hysteresis Model, Energy Dissipation, TEASPA, ETABS
相關次數: 點閱:21下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋼筋混凝土(RC)柱在地震區域中扮演著至關重要的角色。儘管新型鋼筋混凝土(New RC),結合高強度混凝土(HSC)與高強度鋼筋(HSS)在斷面尺寸更小與承載力更高方面具有優勢,其耐震行為仍不如傳統RC明確。Pivot 滯回模型是預測結構循環行為的工具,依賴於源自傳統混凝土的參數(α 代表卸載剛度、β 代表夾縮效應),這可能會錯誤反映高強度RC柱的行為與特有的破壞模式。本研究旨在針對使用高強材料的新型RC柱,優化其滯回模型中的α與β參數,為工程師提供更精準的耐震分析工具。研究目標是推導經實驗驗證的新型RC柱α與β值。分析了25個試體數據,考慮軸力比、配筋量與破壞模式(彎曲破壞與剪力破壞)。參數透過ETABS與TEASPA軟體進行手動校準,重點在於對應實驗的耗能行為。接著,使用有界最小平方法(Bounded Least Squares Regression),建立新的α與β 建議公式,並納入軸力比(ALR)、縱向鋼筋指數(LRI)與橫向鋼筋指數(TRI)。對於彎曲主控(α_F、β_F)與剪力主控(α_S 、 β_S )的破壞類型分別建立公式。驗證結果顯示,這些公式在預測新型RC柱滯回行為與耗能能力方面,顯著優於現有模型。該研究提供了針對不同破壞模式的可靠參數,有助於提升非線性動態分析的精度,並促進新型RC柱結構的耐震設計安全性。未來的研究可以考慮引入更多參數或應用機器學習技術進一步優化公式。

    Reinforced concrete (RC) columns are critical in seismic regions. While New Reinforced Concrete (New RC), the combination of high-strength concrete (HSC) and High Strength Steel (HSS), offer advantages like smaller sections and higher load capacities, their seismic behavior is less understood than conventional RC. The Pivot Hysteresis Model, used for predicting cyclic behavior, relies on parameters (α for unloading stiffness, β for pinching) derived from conventional concrete, potentially misrepresenting high-strength RC column behavior and distinct failure modes. This research optimizes α and β parameters for new RC columns using high-strength materials, aiming to provide engineers with a more accurate seismic analysis tool. The objective was to derive experimentally validated α and β values for these columns. This involved analyzing data from 25 specimens, considering axial load ratios, reinforcement, and failure modes (flexure-dominated or shear-dominated). Parameters were manually calibrated using ETABS and TEASPA, focusing on matching experimental energy dissipation. New recommendation formulas for α and β were then developed via bounded least squares regression, incorporating Axial Load Ratio (ALR), Longitudinal Reinforcement Index (LRI), and Transverse Reinforcement Index (TRI). Separate equations for flexure-dominated (α_F and β_F), and shear-dominated (α_S and β_S ) failures were established. Validation showed these formulas significantly improved prediction of New RC column hysteretic response and energy dissipation compared to existing models. The study provides robust, failure-mode-specific parameters, enhancing nonlinear dynamic analysis reliability and contributing to safer seismic designs for structures with New RC columns. Future work could explore refining formulas with more parameters or machine learning.

    Abstract i 摘要 ii Acknowledgement iii Table of Content iv List of tables vi List of Figures vii CHAPTER 1 Introduction 1 1.1. Introduction 1 1.2. Motivation 1 1.3. Objectives 2 CHAPTER 2 Literature Review 5 2.1. Hysteretic Behavior RC Columns 5 2.1.1. Conventional RC Columns 5 2.1.2. High-Strength Concrete Columns 6 2.2. Hysteresis Models for Reinforced Concrete Columns 6 2.2.1. The Takeda Model 7 2.2.2. The Pivot Hysteresis Model 8 2.2.3. The Bouc-Wen Hysteresis Model 13 CHAPTER 3 Fitting the Pivot Hysteresis Model 20 3.1. Overview 20 3.2. Specimens’ introduction 20 3.2.1. Liu Kuang Yen et al.’s research (2014) 21 3.2.2. Frédéric Légeron et al.’s research (2000) 22 3.2.3. Sugano’s research (1996) 22 3.2.4. Chen Ying Chang’s research (2011) 24 3.2.5. Guan Jie Huang’s research (2013) 24 3.2.6. Yu-Chen Ou and Dimas P. Kurniawan’s research (2015) 25 3.3. Classification of Specimens 38 3.4. Optimization of pivot model parameters 41 3.4.1. Selection of Target Hysteretic Loops for Quantifying Model-Experiment Agreement 42 3.4.2. Manual Calibration of Hysteresis Parameters Using ETABS and TEASPA 44 3.5. Development of Recommendation Formulas for Pivot Parameters 45 CHAPTER 4 Results and Discussion 54 4.1. Validation of proposed formula 54 4.2. Parametric Study and Physical Interpretation 72 4.3. Implications for Seismic Performance Assessment 74 CHAPTER 5 Conclusion 75 5.1. Summary of key findings 75 5.2. Suggestions 76 REFERENCES 77 Appendix A 80 Appendix B 91 Appendix C 113

    Aboutaha, R. S., & Machado, R. I. (1999). Seismic resistance of steel-tubed high-strength reinforced-concrete columns. Journal of Structural Engineering, 125(5), 485-494.
    ACI Committee 363 (2005). High-Strength Concrete (ACI 363R). American Concrete Institute.
    ASCE/SEI 41-13. (2014). Seismic Rehabilitation of Existing Buildings 41-13. American Society of Civil Engineers (ASCE), 518.
    Baber, T. T., & Noori, M. N. (1986). Modeling general hysteresis behavior and random vibration application.
    Baber, T. T., & Wen, Y. K. (1981). Random vibration of hysteretic, degrading systems. Journal of the Engineering Mechanics Division, 107(6), 1069-1087.
    Barrera, A. C., Bonet, J. L., Romero, M. L., & Fernández, M. A. (2012). Ductility of slender reinforced concrete columns under monotonic flexure and constant axial load. Engineering structures, 40, 398-412.
    Bayrak, O., & Sheikh, S. A. (2001). Plastic hinge analysis. Journal of structural engineering, 127(9), 1092-1100.
    Bouc, R. (1967). Forced vibrations of mechanical systems with hysteresis. In Proc. of the Fourth Conference on Nonlinear Oscillations, Prague, 1967.
    Chen, Y. C. (2011). Design of seismic confinement of RC columns using high strength materials. master's thesis, Department of Civil Engineering-College of Engineering, National Taiwan University, Taipei, Taiwan.
    Dowell, O. K., Seible, F., & Wilson, E. L. (1998). Pivot hysteresis model for reinforced concrete members. ACI structural journal, 95, 607-617.
    Elwood, K. J., & Eberhard, M. O. (2009). Effective Stiffness of Reinforced Concrete Columns. ACI Structural Journal, 106(4).
    Hwang, G. J. (2013). Design of seismic confinement of RC columns. Master's thesis, Department of Civil Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan. (in Chinese).
    Kishimoto L., Ohno, Y., Nishina, S., Nakagawa, T., Iguchi, T., and Yamaguchi, Y. (2004). Flexural Characteristics of RC Columns with Plastic Hinges Localized by Much Transverse Reinforcement. In Proceedings of the 13th World Conference on Earthquake Engineering (Vol. 1270, pp. 8). Vancouver, Canada.
    Legeron, F., & Paultre, P. (2000). Behavior of high-strength concrete columns under cyclic flexure and constant axial load. Structural Journal, 97(4), 591-601.
    Légeron, F., & Paultre, P. (2003). Uniaxial confinement model for normal-and high-strength concrete columns. Journal of Structural Engineering, 129(2), 241-252.
    Lin, W. Y. (2022). Study on the Hysteretic Models of Reinforcement Concrete Columns Using High Strength Materials. Master’s thesis, Department of Civil Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan. (in Chinese)
    Ling, Y. C., Mogili, S., & Hwang, S. J. (2022). Parameter optimization for Pivot hysteresis model for reinforced concrete columns with different failure modes. Earthquake Engineering & Structural Dynamics, 51(10), 2167-2187.
    Liu, K. Y. (2014, Oct). Feasibility Study of New RC on the Seismic Design of Bridge Column. The 5th Asia Conference on Earthquake Engineering (5ACEE), Taipei, Taiwan.
    Ma, F., Zhang, H., Bockstedte, A., Foliente, G. C., & Paevere, P. (2004). Parameter analysis of the differential model of hysteresis. J. Appl. Mech., 71(3), 342-349.
    Nielsen, N. N., & Imbeault, F. A. (1971). Validity of various hysteretic systems. In Proc., 3rd Japan National Conference on Earthquake Engineering. Japan (pp. 707-714).
    Ou, Y. C., & Kurniawan, D. P. (2015). Effect of Axial Compression on Shear Behavior of High-Strength Reinforced Concrete Columns. ACI Structural Journal, 112(2).
    Ou, Y. C., & Kurniawan, D. P. (2015). Shear behavior of reinforced concrete columns with high-strength steel and concrete. ACI Structural Journal, 112(1), 35-45..
    Park, R., & Paulay, T. (1991). Reinforced concrete structures. John Wiley & Sons.
    Paultre, P., Eid, R., Langlois, Y., & Lévesque, Y. (2010). Behavior of steel fiber-reinforced high-strength concrete columns under uniaxial compression. Journal of Structural Engineering, 136(10), 1225-1235.
    Priestley, M. N., Seible, F., & Calvi, G. M. (1996). Seismic design and retrofit of bridges. John Wiley & Sons.
    Saiidi, M., & Sozen, M. A. (1981). Simple nonlinear seismic analysis of R/C structures. Journal of the Structural Division, 107(5), 937-953.
    Sezen, H., & Moehle, J. P. (2004, August). Strength and deformation capacity of reinforced concrete columns with limited ductility. In Proceedings of the 13th World Conference on Earthquake Engineering (Vol. 279, pp. 1-15). Vancouver Canada.
    Sharma, A., Eligehausen, R., & Reddy, G. R. (2013). Pivot Hysteresis Model Parameters for Reinforced Concrete Columns, Joints, and Structures. ACI structural journal, 110(2).
    Sheikh, S. A., Shah, D. V., & Khoury, S. S. (1994). Confinement of high-strength concrete columns. ACI Structural journal, 91, 100-100.
    Sugano, S. (1996, June). Seismic behavior of reinforced concrete columns which used ultra-high-strength concrete. In Proc., 11th World Conf. on Earthquake Engineering.
    Takeda, T., Sozen, M. A., & Nielsen, N. N. (1970). Reinforced concrete response to simulated earthquakes. Journal of the structural division, 96(12), 2557-2573.
    Wen, Y. K. (1976). Method for random vibration of hysteretic systems. Journal of the engineering mechanics division, 102(2), 249-263.
    中華民國結構工程學會, 中華民國地震工程學會, 國家地震工程研究中心.2022 .高強度鋼筋混凝土結構設計手冊(第二版). 科技圖書.
    余沛涵、李宏仁、洪崇展. 2020.「新高強度鋼筋混凝土矩形斷面彎矩曲率分析程式之開發」,中華民國第15 屆結構工程及第5 屆地震工程研討會,No.102.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE