| 研究生: |
許靖子 Hsu, Ching-Tzu |
|---|---|
| 論文名稱: |
奈米刮削對溝槽幾何及矽相變化之影響 The Effects of Nano Scratch on Groove Geometry and Phase Transformation of Silicon |
| 指導教授: |
王俊志
Wang, J-J Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 材料移除機制 、奈米溝槽幾何 、矽之相變化 、奈米刮削 |
| 外文關鍵詞: | the geometry of nano grooves, the material removal mechanisms, nano scratching, the phase transformation of silicon |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用奈米壓痕試驗機研究奈米刮削之溝槽幾何及刮削參數對矽相變化之影響。在奈米刮削之溝槽幾何方面,刮削刀具為Berkovich三角錐探針,刮削材料為矽晶片及具無晶鋁鍍膜矽晶片,研究主要觀察刮削後之溝槽幾何。實驗使用平面端及錐面端兩種不同刀具方向進行刮削,分別探討材料移除機制及效率。此外,在刮削具無晶鋁鍍膜矽晶片實驗中,並進一步分析探討力量與深度之關係。研究亦針對矽刮削加工後探討其相變化之情形,實驗中改變刮削速度及刮削之正向力,並藉由拉曼光譜檢視相變化產生之過程。實驗結果顯示刮削速度大時,矽之相變化均為由第一相轉為非晶相;而當刮削速度小時,矽之相變化則依力量變化為由第一相轉為第十二相或第三相。
In this investigation, the nano indentation is used to investigate the geometry of nano scratch grooves on amorphous aluminum film. The silicon phase transformations are also studied under different scratching conditions on the same machine. A Berkovich diamond indenter is used as a scriber in all the experiments. The material removal mechanisms and efficiency are discussed in two scratching orientation of the scriber, face-forward and edge-forward, on amorphous aluminum film and silicon. Furthermore, experiments are conducted to investigate relationship between the groove geometry and the scratching forces of amorphous aluminum film. In silicon scratching experiment, the phase transformations of the groove are observed by Raman spectroscopy under different scratching force and velocity. It is found that higher scratching velocity leads to amorphous phase transformation; on the other hand, lower scratching velocity favors the XII-Si or III-Si phase transformation depending on the magnitude of the the scratching force.
[1] R. Garcia, R. V. Martinez and J. Martinez, “Nano chemistry and scanning probe nanolithographies,” Chemical Society Reviews, 35, pp. 29-38, 2006.
[2] Y. D. Yan, “Investigation on AFM based micro/nano CNC machining system,” International Journal of Machine Tools and Manufacture, 47(11), pp. 1651-1659, 2007.
[3] C. A. Brookes, “Some observations on scratch and indentation hardness measurements,” J. Phys. D: Appl. Phys. , 5, pp. 1284-1293, 1972
[4] T. G. Mathia and B. Lamy, “Sclerometric characterization of nearly brittle materials,” Wear, 108, pp. 385-399, 1986.
[5] B. J. Briscoe, P. D. Evans, E Pelillo and S. K. Sinha, “Scratching maps for polymers,” Wear, 200, pp. 137-147, 1996.
[6] N. Maan and A. Broese Von Grenou, “Low speed scratch experiments on steels,” Wear, 42, pp. 365-390, 1977.
[7] K. Kato, K. Hokkirigawa, T. Kayaba and Y. Endo, “Three dimensional shape effect on abrasive wear,” Trans. ASME, 108, pp. 346-351, 1986.
[8] Gilormini and Felder, “Theoretical and experimental study of the ploughingof a rigid-plastic semi-infinite body by a rigid pyramidal indenter,” Wear, 88, pp.195-206, 1983.
[9] M. D. Vathaire, F. Delamare and E. Felder, “An upper bound model of ploughing by a pyramidal indenter,” Wear, 66, pp.55-64, 1988.
[10] S. Minomura and H. G. Drickmer, “Pressure-induced phase transformations in Si, Ge, and some III-V compounds,” J. Phys. Chem. Solids ,23, pp. 451, 1961.
[11] J. C. Jameson, “Crystal structures at high pressures of metallic modifications of silicon and germanium,” Science, 139, pp.762-764, 1963.
[12] R. H. Wentorf Jr. and J . S. Kasper, “Two new forms of silicon,” Science, 139, pp.338-339, 1963.
[13] R. J. Koblisca and S. A. Solin, “Raman scattering from phonons in polymorphs of Si and Ge,” Physical review letters, 29, pp.725-728, 1972.
[14] J. Z. Hu, L. Z. Merkle, C. S. Menoni and I. L. Spain, “Crystal data for high pressure of silicon,” Physical review B, 34, 4679-4684, 1986.
[15] S. J. Duclos, Y. K. Vohra and A. L. Ruoff, “Experimental study of the crystal stability and equation of state of Si to 248 GPa,” Physical review B, 41, pp.12021-12028, 1990.
[16] G. M. Pharr and W. C. Oliver, “Electrical resistance of metallic contacts on silicon and germanium during indentation,” J. Mater. Res., 7(4), pp. 961-972, 1992.
[17] A. Kailer, Y. Gogotsi and K. Nickel, “Phase transformations of silicon caused by contact loading,” J. Appl. Phys., 81(7), 1997.
[18] Y. Gogotsi, C. Baek and F. Kirscht, “Raman microspectroscopy study of processing-induced phasetransformations and residual stress in silicon,” Semicond. Sci. Technol. 14, pp. 936-944, 1999.
[19] R. Gassilloud, C. Ballif , P. Gasser, G. Buerki and J. Michler, “Deformation mechanisms of silicon during nanoscratching,” Physica status solidi. A. Applied research 202(15), pp. 2858-2869, 2005.
[20] V. Domnich and Y. Gogotsi, “Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon,” Applied physics Letter, 76, pp. 2214-2216, 2000.
[21] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., 7(6), pp. 1564-1583, 1992.
[22] W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res., 19(1), pp.3-20, 2004.