簡易檢索 / 詳目顯示

研究生: 張芷瑋
Chang, Chih-Wei
論文名稱: 由縮尺模型樁側向載重試驗探討超額孔隙水壓激發造成之土壤阻抗弱化
A Study on the Soil Resistance Degradation Induced by Excess Pore Water Pressure Buildup Using Lateral Loading Tests on Scaled Model Piles
指導教授: 柯永彥
Ko, Yung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 154
中文關鍵詞: 土壤液化縮尺物理模型試驗滲流引致液化基樁側向載重p-y曲線
外文關鍵詞: soil liquefaction, scaled physical modeling, seepage-induced liquefaction, lateral loading on piles, p-y curve
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地震引致之土壤液化現象將導致砂質土層強度與勁度顯著降低,進而影響基礎構造物之耐震性能。雖然我國現行建築物基礎構造設計規範建議了液化地層之土壤參數折減係數,然其僅適用於抗液化安全係數(F_L)小於1之情況,對於F_L大於1但仍有超額孔隙水壓激發之情境則未予以涵蓋。為能合理掌握地震時具液化潛能砂質地盤中基樁之側向承載能力,本研究透過縮尺物理模型試驗,在不同超額孔隙水壓激發程度(以超額孔隙水壓比 r_u 代表之)下對飽和砂土地盤中模型樁之樁頭進行反覆側向加載;其中,為能精準達到目標 r_u 值,係採用向上滲流來引發超額孔隙水壓。試驗中量測樁身撓曲應變,並藉由多項式回歸擬合彎矩函數,進而求取樁身之剪力、土壤反力與側向位移分佈,探討樁周土壤側向阻抗在液化過程中之變化趨勢。結果顯示,當 r_u 接近1時,土壤提供之反力顯著降低,且側向承載能力明顯衰退,展現液化土層對基樁耐震性能之負面影響。進一步建立不同深度下之土壤反力~側向位移關係,即所謂之p-y曲線,觀察其於超額孔隙水壓激發時之弱化情況,並歸納p-y曲線斜率(即水平向地盤反力係數)折減程度與r_u之關係,據以補足現行規範所建議折減係數不足之處。研究成果有助於合理掌握液化地盤中基樁之側向承載能力,可做為基礎耐震設計與耐震能力評估之參考,有助於提升地震災害下基礎系統之安全性。

    In this study, scaled physical model tests were conducted to better understand the lateral bearing capacity of piles in liquefiable ground during earthquakes. In these tests, displacement-controlled cyclic lateral loading was applied to the model piles embedded in saturated sand. The sand was subjected to various degrees of excess pore pressure buildup (represented by the excess pore pressure ratio, r_u ) induced by controlled upward seepage. The flexural strain distributions along the model pile were measured, and polynomial regression was used to fit the bending moment profiles. Based on the polynomial moment functions, the distributions of the soil reaction (p) and lateral displacement (y) were further deduced to investigate the degradation of lateral soil resistance during the liquefaction process. The results show that the soil reaction decreases significantly as r_(u )approaches 1, leading to a notable reduction in lateral bearing capacity of the pile. This highlights the detrimental effects of liquefaction on the seismic performance of piles. The relationships between soil reaction and lateral displacement (so-called p–y curves) at different depths were further established. The degradation of p-y curves under different degrees of excess pore pressure was observed. Accordingly the reduction in the coefficients of horizontal subgrade reaction (i.e., the secant stiffness of the p–y curve) was correlated with r_u , which helps to fix the insufficiency of current design code in Taiwan. These findings provide practical insights for the seismic design and performance assessment of foundations.

    摘要I Abstract II 誌謝 VI 目錄 VII 圖目錄 X 表目錄 XVII 第一章 緒論 1 1.1 研究背景及動機 1 1.2 研究方法與流程 2 1.3 論文章節與研究內容 4 第二章 文獻回顧 5 2.1 基樁側向承載行為 5 2.1.1 基樁側向承載行為 5 2.1.2 基樁側向承載行為特性 6 2.2 基樁側向承載行為分析 7 2.2.1 線彈性溫克基礎模式(彈性基礎梁模式) 7 2.2.2 非線性溫克基礎模式(p-y曲線分析法) 10 2.3 基樁側向承載行為之相關試驗研究 12 2.4 土壤液化引致樁周土壤阻抗弱化之試驗研究 18 2.5 液化地層土壤參數折減 20 2.6 滲流引致土壤液化之機制與應用 23 第三章 研究方法 28 3.1 試驗概述 28 3.2 試驗設備介紹 28 3.2.1 液化模擬試驗箱 28 3.2.2 定速率可移動式霣落箱 31 3.3 地盤試體 32 3.3.1 試驗用砂 32 3.3.2 地盤試體準備 34 3.4 模型樁 35 3.4.1 模型樁之設計考量 35 3.4.2 模型樁斷面性質 36 3.5 模擬情境及試驗配置 38 3.6 試驗用加載設備與量測儀器 39 3.6.1 電動推桿 39 3.6.2 模組化擷取系統 40 3.6.3 National Instruments LabVIEW軟體 42 3.6.4 水壓計 44 3.6.5 應變計 45 3.6.6 拉線式位移計 46 3.6.7 荷重元 47 3.7 基樁側向承載行為分析之方法 47 3.7.1 彎矩函數採四次多項式 49 3.7.2 彎矩函數採五次多項式 49 第四章 滲流引致土壤液化之效能測試 51 4.1 試驗配置 51 4.2 各深度超額孔隙水壓激發情況 52 第五章 縮尺模型樁側向載重試驗結果 59 5.1 樁頭側向載重與位移之關係 59 5.2 樁身撓曲應變與彎矩分布 72 5.2.1 樁身撓曲應變量測結果 72 5.2.2 樁身彎矩分布試驗結果 79 5.3 以多項式擬合樁身彎矩、剪力、土壤反力及位移分布 80 5.3.1 樁身彎矩多項式函數之選取 80 5.3.2 不同超額孔隙水壓下之樁身反應 85 第六章 超額孔隙水壓激發造成之土壤阻抗弱化 109 6.1 試驗所得各深度之p-y曲線 109 6.2 地盤反力係數 115 6.3 樁周土壤阻抗之折減係數 123 第七章 結論與建議 128 7.1 結論 128 7.2 建議 129 第八章 參考文獻 130

    1. 內政部,建築物基礎構造設計規範,台內營字第9085629號函訂定,2001。
    2. 內政部,建築物耐震設計規範及解說,台內營字第0940087319號令修正,2005。
    3. 內政部,建築物耐震設計規範及解說,台內營字第0990810250號令修正,2011。
    4. 內政部,建築物基礎構造設計規範,台內營字第1120807974號令修正,2023。
    5. 內政部,建築物耐震設計規範及解說,台內國字第1130801422號令修正,2024。
    6. 日本道路協會,「道路橋示方書‧同解說-V耐震設計編」,1996。
    7. 日本道路協會,「道路橋示方書‧同解說-IV下部構造編」,2017。
    8. 日本建築學會,「建築基礎構造設計指針」,1988。
    9. 日本建築學會,「建築基礎構造設計指針」,2001。
    10. 日本建築學會,「建築基礎構造設計指針」,2019。
    11. 許志瑋,「基樁受側向載重之模型試驗設計與分析」,國立中央大學土木工程研究所,碩士論文,2015。
    12. 張有齡,譯者:周南山,「張氏簡易側樁分析法(上篇:靜力部份)」, 地工技術 雜誌,第25期,第64-82頁,1989。
    13. 莊明仁,「基樁承受側向載重之反應分析」,國立成功大學土木工程研究所,博士論文,2001。
    14. 李喬茵,「縮尺模型樁受震時之樁土互制反應」,國立成功大學土木工程研究所,碩士論文,2020。
    15. 張皓宇,「液化地盤側潰現向之物理模型試驗技術與變位特性研究」,國立成功大學土木工程研究所,碩士論文,2023。
    16. 林楷席,「基樁受液化側潰作用之物理模型試驗」,國立成功大學土木工程研究所,碩士論文,2024。
    17. 周佳頤,「以應力控制動態三軸試驗探討液化地層之土壤參數折減」,國立成功大學土木工程工程研究所,碩士論文,2025。
    18. 林昌良,「飽和砂中模型樁之側向載重試驗」,國立台灣大學土木工程工程研究所,碩士論文,2011。
    19. 王紫芳,「液化砂土之滲透性試驗」,國立台灣大學土木工程工程研究所,碩士論文,2014。
    20. 黃俊鴻,朱柏林,黃梓益,邱晨佑,盧志杰,楊炫智,鄧源昌,陳冠羽,周昕成,游騰瑞,「液化土壤是天然的減震材料嗎? 2022/09/18池上地震橋墩破壞模式的觀察與解釋」,地工技術,第 176 期,第 63-72 頁,2023。
    21. 岩崎敏男,常田賢一,吉田精一,後藤勝志,「砂質地盤の流動化及び杭基礎構造物 の動的応答特性に関する模型振動実験」,土研資料第1605號,日本建設省土木研究所,1980。
    22. 岩崎敏男,常田賢一,木全俊雄,「地震時における砂質地盤の液状化判定法と耐震設計への適用に関する研究」,土研資料第1729號,日本建設省土木研究所,1981。
    23. A.B. Vesic, Bending of beams resting on isotropic elastic solid, J. Eng. Mech. Div. ASCE 87 (2), 35-54, 1961.
    24. American Petroleum Institute, Recommended practice for planning, designing and construction fixed offshore platforms—Working stress design, 2005.
    25. American Petroleum Institute, Recommended practice for planning, designing, and constructing fixed offshore platforms, 2010.
    26. American Petroleum Institute, Recommended practice for planning, designing, and constructing fixed offshore platforms, 2014.
    27. Ashour, M., Norris, G., & Pilling, P. , Lateral loading of a pile in layered soil using the strain wedge model, Journal of Geotechnical and Geoenvironmental Engineering, 124(4), 303–315, 1998.
    28. Bienen, B. J., Grabe, J., Randolph, M., & White, D., Response of piles with wings to monotonic and cyclic lateral loading in sand, Journal of Geotechnical and Geoenvironmental Engineering, 138(3), 364–375, 2012.
    29. Chang, B. J., & Hutchinson, T. C., Experimental evaluation of p-y curves considering development of liquefaction, Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 577–586, 2013.
    30. Chu, M. C.,& Louis Ge, Stiffness degradation of coarse and fine sand mixtures due to cyclic loading, Engineering Geology, 288, Article 106155, 2021.
    31. Cubrinovski, M., & Ishihara, K., Empirical correlation between SPT N-value and relative density for sandy soils. Soils and Foundations, 39(5), 61–71, 1999.
    32. Dhrkop, J., Grabe, J., Bienen, B., White, D. J., & Randolph, M. F., Centrifuge experiments on laterally loaded piles with wings, In Proceedings of the Seventh International Conference on Physical Modelling in Geotechnics , 919–924, 2010.
    33. Hetényi, M., Beams on elastic foundation. University of Michigan, 1946.
    34. Hwang, J. H., Yang, C. W., & Chen, C. H., Investigations on soil liquefaction during the Chi-Chi earthquake, Soils and Foundations, 43(6), 107–123, 2003.
    35. Ishihara, K., Tatsuoka, F., & Yasuda, S., Undrained deformation and liquefaction of sand under cyclic stresses, Soils and Foundations, 15(1), 29–44, 1975.
    36. Ju, S. H., Huang, B. Y., Ni, S. H., Liu, K. Y., Ko, Y. Y., Hsu, S. Y., Chang, Y. W., Lu, L. Y., & Ling, G. L., Brief introduction of shaking table test of 1/25 scale model of offshore wind turbine with jacket foundation, International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake, 2019.
    37. Ko, Y. Y., & Li, Y. T., Response of a scale-model pile group for a jacket foundation of an offshore wind turbine in liquefiable ground during shaking table tests, Earthquake Engineering and Structural Dynamics, 49(15), 1682–1701, 2020.
    38. Ko, Y. Y., Hsu, S. Y., Yang, H. C., Lu, C. C., Hwang, Y. W., Liu, C. H., & Hwang, J. H., Soil liquefaction and ground settlements in 6 February 2018 Hualien, Taiwan, earthquake, Seismological Research Letters, 90(1), 51–59, 2019.
    39. Ko, Y. Y., Tsai, C. C., Hwang, J. H., Hwang, Y. W., Ge, L., & Chu, M. C., Failure of engineering structures and associated geotechnical problems during the 2022 ML 6.8 Chihshang earthquake, Taiwan. Natural Hazards, 118(1), 55–94, 2023.
    40. Li, Z., Haigh, S. K., & Bolton, M. D., Centrifuge modeling of mono-pile under cyclic lateral loads, In Proceedings of the Seventh International Conference on Physical Modelling in Geotechnics , 965–970, 2010.
    41. Liu, L., & Dobry, R., Effect of liquefaction on lateral response of piles by centrifuge model tests, NCEER Bulletin, 9(1), 7–11, 1995.
    42. Long, J. H., & Vanneste, G., Effects of cyclic lateral loads on piles in sand, Journal of Geotechnical and Geoenvironmental Engineering, 120(1), 225–244, 1994.
    43. Matlock, H., Correlation for design of laterally loaded piles in soft clay, In Proceedings of the 2nd Annual Offshore Technology Conference ,Vol. 1, 577–594,1970.
    44. Poulos, H. G., & Davis, E. N., Pile foundation analysis and design, John Wiley & Sons, 1980.
    45. Reese, L. C., Analysis of laterally loaded piles in weak rock, Journal of Geotechnical and Geoenvironmental Engineering, 123(11), 1010–1017, 1997.
    46. Reese, L. C., Cox, W. R., & Koop, F. D., Analysis of laterally loaded piles in sand, In Proceedings of the Sixth Annual Offshore Technology Conference ,Vol. 2, 473–485, 1974.
    47. Tokimatsu, K., & Yoshimi, Y., Empirical correlation of soil liquefaction based on SPT N value and fines content, Soils and Foundations, 23(4), 56–74, 1983.
    48. Tsai, C. C., Hsu, S. Y., Wang, K. L., Yang, H. C., Chang, W. K., Chen, C. H., & Hwang, Y. W., Geotechnical reconnaissance of the 2016 ML6.6 Meinong earthquake in Taiwan, Journal of Earthquake Engineering, 22(9), 1710–1736, 2018.
    49. Ueng, T. S., Inference of behavior of saturated sandy soils during earthquakes from laboratory experiments. Journal of GeoEngineering, 1(1), 1-9, 2006.
    50. Winkler, E., Die Lehre der Elastizität und Festigkeit [On elasticity and fixity], Pragur, 1967.
    51. Yoshida, N., Tazoh, T., Wakamatsu, K., Yasuda, S., Towhata, I., Nakazawa, H., & Kiku, H., Causes of Showa Bridge collapse in the 1964 Niigata earthquake based on eyewitness testimony. Soils and Foundations, 47(6), 1075–1087, 2007.

    無法下載圖示 校內:2029-08-01公開
    校外:2029-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE