| 研究生: |
王洸富 Wang, Guang-Fu |
|---|---|
| 論文名稱: |
屏蔽電荷對180度域壁成核動態機制之影響 Screen charge effect on nucleation dynamics of 180-degree domain wall |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 鐵酸鉍 、壓電力顯微鏡 、動態 、表面電位顯微鏡 、屏蔽電荷 |
| 外文關鍵詞: | BFO, PFM, dynamic, KFM, screen charge |
| 相關次數: | 點閱:120 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,利用原子力顯微鏡(Atomic Force Microscopy,AFM)系統觀察鐵酸鉍磊晶薄膜(BiFeO3,BFO)動態行為(Dynamic behavior)。利用壓電力顯微鏡(Pizeoresponse Force Microscopy,PFM)可同時觀察表面形貌、電偶極垂直(out of plane,OP)及水平(in plane,IP)分量,藉此可建構出BFO磊晶薄膜的電域結構,並進行動態量測結果顯示BFO(001)/SRO/STO/miscut 30磊晶薄膜反向成長活化場α為2.601 MV/cm ~ 2.895 MV/cm;電域正向成長的活化場α為0.889 MV/cm ~ 0.947 MV/cm。利用BFO(001)/SRO/DSO磊晶薄膜說明域壁對活化場無明顯的影響;利用BFO(111)/SRO/STO說明極化軸方向明顯影響活化場。利用BFO(001)/SRO/DSO 100 nm與1000 nm說明膜厚對活化場有明顯影響。另外利用表面電位顯微鏡(Kelvin Force Microscopy,KFM)觀察到在施加電壓使電域翻轉的同時,由探針注入屏蔽電荷(Screen Charge),並且利用此點建立屏蔽電荷模型解釋BFO磊晶薄膜的動態行為,指出靜電能在電域成長的過程中扮演重要角色。
In this study, I present a quantitative study of the 180 degree domain wall motion in epitaxial BiFeO3 films, and discuss the domain growth behaviors by the piezoresponse force microscopy (PFM). The topography, in-plane (IP), and out-of-plane (OP) components of domains for BFO thin films can be revealed simultaneously. The upward and downward activation field (αup and αdown) on BFO(001)/SRO/STO epitaxial thin film was about 2.601~ 2.895 MV/cm and 0.889~ 0.947 MV/cm, respectively. We suggest the as-grown 710 domain wall only had clip effects on dynamic behaviors of the domains. When the domain grew to the size about original domain width, the domain wall was clipped by the 710 domain wall. . In order to understand the polarization axis and the thickness effect under the dynamic process, we used two different samples, BFO(111)/SRO/STO and BFO(001)/SRO/DSO thin films. Finally, we created a screen charge model to support the activation behavior. The static electricity energy plays a critical role in the activation process.
1.Gene H. Haertling, J. Am. Ceram. Soc. 82, 4 797–818 (1999).
2.W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442, 17 (2006).
3.T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom and R. Ramesh, Nature Materials 5, 825-829 (2006).
4.R. Ramesh and Nicola A. Spaldin, Nature Materials 6, 21-29 (2007).
5.T. Zhao, A. Scholl, F. Zavaliche, H. Zheng, and M. Barry, A. Doran, K. Lee, M. P. Cruz and R. Ramesh, App. Phys. Lett. 90, 123104 (2007).
6.Ying-Hao Chu, Lane W. Martin, Mikel B. Holcomb, Martin Gajek, Shu-Jen Han, Qing He, Nina Balke, Chan-Ho Yang, Donkoun Lee, Wei Hu, Qian Zhan, Pei-Ling Yang, Arantxa Fraile-Rodríguez, Andreas Scholl, Shan X. Wang and R. Ramesh, Nature Materials 7, 478-482 (2008)
7.Faris B. Abdul Ahad, D. S. Hung, Y. D. Yao, S. F. Lee, C. S. Tu, T. H. Wang, Y. Y. Chen and Y. P. Fu, J. Appl.Phys. 105, 07D912(2009)
8.F. Zavaliche, R. R. Das, D. M. Kim, C. B. Eom, S. Y. Yang, P. Shafer, and R. Ramesh, App. Phys. Lett. 87, 182912 (2005).
9.Ying-Hao Chu, Qian Zhan, Lane W. Martin, Maria P. Cruz, Pei-Ling Yang, Gary W. Pabst, Florin Zavaliche, Seung-Yeul Yang, Jing-Xian Zhang, Long-Qing Chen, Darrell G. Schlom, I.-Nan Lin, Tai-Bor Wu, and Ramamoorthy Ramesh, Adv. Mater. 18, 2307-2311 (2006).
10.P. Shafer, F. Zavaliche, Y.-H. Chu, P.-L. Yang, M. P. Cruz and R. Ramesh, APPLIED PHYSICS LETTERS 90, 202909 (2007).
11.S. V. Kalinin, B. J. Rodriguez, S. Jesse, Y. H. Chu, T. Zhao, R. Ramesh, S. Choudhury, L. Q. Chen, E. A. Eliseev and A. N. Morozovska, PNAS 10, 51 (2007).
12.I. E. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1959).
13.I. E. Dzyaloskinskii, Sov. Phys. JETP 11, 708 (1960).
14.J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science 299 14 (2003).
15.J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin and K. M. Rabe1, Phys. Rev. B 71, 014113 (2005).
16.Claude Ederer and Nicola A. Spaldin, Solid State and Materials Science 9, 128-139 (2005).
17.H. Zheng et al., Science 303, 661 (2004).
18.Ce-Wen Nana, M. I. Bichurin, Shuxiang Dongb, D. Viehland and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
19.Nicola A. Spaldin and Manfred Fiebig.,SCIENCE VOL 309 15 JULY 2005
20.T. Tybell, P. Paruch, T. Giamarchi and J.-M. Triscone, Phys. Rev. Lett. 89, 9 (2002).
21.Nicola A. Hill, J. Phys. Chem. B 104, 6694-6709 (2000).
22.Srinivasan G, Hayes R and Bichurin M I, Solid State Commun. 128 261 (2003).
23.Smolenskii G. A. and Chupis I. E., Sov. Phys. Usp.25 475 (1982).
24.Schmid H., Int. J. Magn. 4 337 (1973).
25.Hill NA, Filippetti A.J, Magn Mater 976, 242-245 (2002).
26.Baettig P. and Spaldin N. A., Appl. Phys. Lett. 86 012505 (2005).
27.Van Aken B. B. and Palstra T. T. M., Phys. Rev. B 69 134113 (2004).
28.Van Aken B. B., Palstra T. T. M., Filippetti A. and Spaldin N. A., Nat. Mater. 3, 164 (2004).
29.Goto T., Kimura T., Lawes G., Ramirez A. P. and TokuraY., Phys. Rev. Lett. 92 257201 (2004).
30.Efremov D. V., van den Brink J. and Khomskii D. I., Nat.Mater. 3 853 (2004).
31.Robert T. Smith, Gary D. Achenbach, Robert Gerson and W. J. James, J. Appl. Phys. 39, 1 (1968).
32.Xiaoding Qi, Joonghoe Dho, Rumen Tomov, Mark G. Blamire and Judith L. MacManus-Driscoll, App. Phys. Lett. 86, 062903 (2005).
33.W. G. Cady, McGraw-Hill, New York (1946) .
34.Toshio Mitsui, Itaru Tatsuzaki and Eiji Nakamura, Gordon and Breach Science Publishers, New York, (1976).
35.吳朗, “電子陶瓷-壓電”, 全欣資訊圖書股份有限公司 (1994) .
36.張凱勛,成功大學,碩士論文, “鋯鈦酸鉛(Pb(ZrTi)O3鐵電材料之奈米電域極化及反轉研究” (2006) .
37. 洪從軒,成功大學,碩士論文, “鎳鐵/鈦酸鍶鋇、鎳鐵/鈦酸鋇雙層膜系統之多鐵性研究” (2007).
38.林其叡, 成功大學, 碩士論文, “多鐵性鐵酸鉍薄膜之電域結構與電域成長”(2008)
39.鍾維烈, “鐵電體物理學”, 科學出版社,(2000).
40.Kenji Uchino. Ferroelectric Devices, Materials Engineering. Marcel Dekker, 2000, ISBN 0-8247-8133-3.
41.A. F. Devonshire, Advances in Physics, 3 , 10, 85-130.(1954).
42.B. D. Cullity,S. R. Stock, Prentice Hall, New Jersey (2001).
43.F. Zavaliche, P. Shafer, M.P. Cruz, R. R. Das, D. M. Kim, and C. B. Eom, App. Phys. Lett., 87,252902(2005)
44.Ying-Hao Chu, Maria P. Cruz, Chan-Ho Yang, Lane W. Martin, Pei-Ling Yang, Jing-Xian Zhang, Kilho Lee, Pu Yu, Long-Qing Chen, and Ramamoorthy Ramesh. Adv. Mater. 2007, 19, 2662–2666
45.T. ZHAO1, A. SCHOLL, F. ZAVALICHE, K. LEE, M. BARRY, A. DORAN, M. P. CRUZ, Y. H. CHU, C. EDERER, N. A. SPALDIN, R. R. DAS, D. M. KIM, S. H. BAEK, C. B. EOM AND R. RAMESH.,doi:10.1038/nmat1731
46.Jie Wang, San-Qiang Shi, Long-Qing Chen, Yulan Li, Tong-Yi Zhang.,Acta Materialia doi:10.1016/j.actamat.2003.10.011
47.B. J. Rodriguez, R. J. Nemanich, A. Kingon, and A. Gruverman.,APPLIED PHYSICS LETTERS 86, 012906 (2005)
48.A. Gruverman, M. Tanaka.,JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 3
49.陳力俊,”材料電子顯微鏡學”,行政院國家科學委員會精密儀器發展中心(2003)
50.Sergei N. Magonov and Myung-Hwan Whangbo, New York VCH (1996)
51.M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe.,Appl. Phys. Lett. 58 (25), 24 June 1991
52.Y. C. Chen,Q. R. Lin, and Y. H. Chu.,APPLIED PHYSICS LETTERS 94, 122908(2009)
53.戴湘華,成功大學,碩士論文, “鐵酸鉍(100)磊晶薄膜的域壁動態移動”(2009)
54.柯政宏,成功大學,碩士論文, “鐵酸鉍(111)磊晶薄膜鐵電電域之動態鬆弛”(2009)
校內:2015-07-12公開