簡易檢索 / 詳目顯示

研究生: 張勝傑
Chang, Shen-Chie
論文名稱: 利用數位影像處理技術之微型多管道流式細胞儀之研究
Micromachined Multi-cell-line Device For Cell/particle Counting and Sorting Utilizing Image Detection System
指導教授: 李國賓
Lee, Gwo-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 91
中文關鍵詞: 流式細胞儀、水力集中效應、數位影像處理、介電泳、微流體
外文關鍵詞: multi-cell-line, flow cytometer, hydrodynamic focusing, digital image processing, dielectrophoresis, microfluidics
相關次數: 點閱:227下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究提出一種以影像偵測為基礎的新式微型多管道流式細胞儀,免除細胞染色及各種精密光學檢測儀器之使用,可進行細胞之計數及分離。以多管道設計結合流體分流之概念,將邊鞘流體進量口由四個縮減為一個,減少測試儀器之使用量、節省晶片製作及封裝測試時間。利用水力集中效應將樣品流聚焦,配合顯微鏡及灰階高速數位攝影機對晶片管道進行拍攝,以影像軟體計算不同尺寸之粒子數目及速度。在晶片管道末端設計三個流體出口,並利用負介電泳力進行細胞分類及蒐集。

      使用螢光標定之細胞計數方法,過程十分繁雜,而且一次僅能對一條樣品流進行偵測,本研究針對此點,使用影像偵測方法,對細胞進行計數,計數過程不需對細胞做任何處理,且可同時通入多條樣品流進行計數,可提高細胞偵測效率。

      本研究利用微細加工技術,製造微型多管道流式細胞儀晶片。以生物相容性佳且價格便宜之鈉玻璃為基材,批次製作微管道及微電極晶片。晶片製作完成,以不同尺寸之聚苯乙烯珠及人類紅血球細胞測試晶片,實驗測試得樣品流中之大小聚苯乙烯珠流出管道的粒子數濃度誤差在3%以內,計算之粒子數目誤差在1%以內,紅血球細胞的誤差則為7%,實驗結果顯示細胞計數誤差極小,證明本研究之新型多管道流式細胞儀是一種很好的細胞計數方法。

      This paper reports a new micromachine-based flow cytometer capable of parallel processing of cell/particle counting and sorting using microfluidic technology. Hydrodynamic focusing of multiple sample streams is achieved simultaneously by using a new layout of sheath flow channels coming form one single inlet port. Thus only one syringe pump is required during the operation. The flow rate of each sheath flow could be much more stable and uniform with this approach. The images of the focused multiple samples are recorded downstream utilizing a high-speed digital CCD camera. Digital image processing technique is then used to count the number of the cells/particles and measure the speed of the cells/particles at the same time. Moreover, the size of the cell/particle can be identified using the image detection system. Theoretical models based on a “flow-rate-ratio” method are used to predict the width and the position of the multiple focused streams, which could be incorporated with digital image system. Experimental data are found to be highly consistent with theoretical results. Subsequently, cell/particle sorting could be achieved using dielectrophoretic (DEP) forces generated by built-in micro-electrodes downstream. The proposed multi-cell-line flow cytometer is fabricated in low-cost soda-lime glass using a rapid fabrication process. Experimental data show that the developed device can successfully detect the number of the cells/particles in two parallel sample streams and the velocities of the cells/particles in each cell line as well. Low counting error and high counting reliability are also verified by counting a mixture of polystyrene beads with different sizes. Human red blood cells are also used for cell counting test. Moreover, cell/particle counting has been demonstrated successfully. The throughput and the performance of the cell counting/sorting device could be greatly improved due to the development of the proposed methods.

    目 錄 中文摘要   i 英文摘要  iii 誌謝     v 目錄    vii 表目錄    x 圖目錄   xi 符號說明  xix 第一章 緒論 1-1 前言             1 1-2 微機電系統          2 1-3 文獻回顧           3 1-4 研究動機與目的        15 1-5 研究架構           18 第二章 基礎原理 2-1 微流體聚焦          21 2-2 數位影像計數原理       26  2-2-1 細胞計數原理       26  2-2-2 不同尺寸細胞之計數    29  2-2-3 細胞流速偵測       30 2-3 介電泳效應          32  2-3-1 電中性粒子之介電泳效應  32  2-3-2 細胞所受之介電泳力    36 第三章 晶片之設計及製作 3-1 晶片設計           39 3-2 光罩製作           44 3-3 晶片製程           45  3-3-1 微流道製程        46  3-3-2 微電極製程        53  3-3-3 鑽孔           58  3-3-4 晶片接合         58 3-4 晶片封裝           59 第四章 結果與討論 4-1 實驗架設           61 4-2 樣品流之聚焦測試       63 4-3 影像處理分析之細胞計數    66  4-3-1 聚苯乙烯珠與紅血球細胞  66  4-3-2 聚苯乙烯珠之測試與分析  67  4-3-3 紅血球細胞之測試與分析  73 4-4 負介電泳力之微流體開關    75  4-4-1 負介電泳力之測試與分析  76  4-4-2 紅血球細胞之分類測試   78 第五章 結論與未來展望 5-1 結論             83 5-2 未來展望           84 參考文獻             86 自述               90 著作               91

    參 考 文 獻

    1. R. P. Feynman, “There is plenty of room at the bottom, ”Journal of microelectromechanical systems, 1 , 1 , 60-66, 1992.

    2. A. Leeuwenhoek, “Microscopical observation concerning blood, milk, bones, the brain, spitle and cuticula, ” Phil. Trans. 121-130 ,1674.

    3. A. Moldavan, “Photo-electric technique for the counting of microscopical cells, ” Science 80, 188-189, 1934.

    4. P. J. Crosland-Taylor, “A device for counting small particles suspended in a fluid through a tube, ” Nature 171, 37-38, 1953.

    5. W. H. Coulter, U.S. Patent No.2656508. “Means for counting particles suspended in a fluid, ” Filed August 27,1949.Issued October 20,1953.

    6. M. R. Melamed, T. Lindmo, and M. L. Mendelsohn, “Flow cytometry and sorting, ” second edition, 1990.

    7. P. T. Sharpe, “Methods of cell separation, ” Elsevier, 23-26, 1988.

    8. Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes, ” Sensors and Actuators B, 98, 356-367, 2004.

    9. M. Berger, J. Castelino, R. Huang, M. Shah, and R. H. Austin, “Design of a microfabricated magnetic cell separator, ” Electrophoresis, 22, 3883-3892, 2001.

    10. M. Nakashima, M. Yammada, and M. Seki, “Pinched flow fractionation for continuous particle separation in a microfluidic device, ” Proc. 17th IEEE MEMS, 33-36 ,2004.

    11. J. Voldman, M. Toner, M. L. Gray, and M. A. Schmidt, “A dielectrophoresis-based array cytometer, ” Transducers, 322-325 , 2001.

    12. J. Voldman, M. Toner, M. L. Gray, and M. A. Schmidt, “Design and analysis of extruded quadrupolar dielectrophoretic traps, ” Journal of Electrostatics, 57, 69-90, 2003.

    13. H. Sano, H. Kabata, O. Kurosawa, and M.Washizu, “Dielectrophoretic chromatography with cross-flow injection, ” Proc. of the IEEE 15th International MEMS Conference ,11-14, 2002.

    14. R. J. Olson, A. Shalapyonok, and H. M. Sosikz, “An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot, ”Deep-Sea Research Ⅰ, 50, 301-315, 2003.

    15. D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J. M. Ramseyz, “Microchip flow cytometry using electrokinetic focusing, ” Anal. Chem., 71, 4173-4177, 1999.

    16. G. B. Lee, C. H. Lin, and G. L. Chang, “Micro flow cytometers with buried su-8/sog optical waveguides, ” Sensors and Actuators A: Physical, 103(1-2), 165-170, 2003.

    17. C. H. Lin, G. B. Lee, and B. H. Hwei, “Design, Fabrication and Characterization of a Novel Micromachined Flow Cytometer, ” The twentieth national conference on Chinese society of mechanical engineering, 679-685, 2003.

    18. R. Miyake, H. Ohki, I. Yamazaki, and R. Yabe, “A development of micro sheath flow cytometer, ” Proc. 4th IEEE MEMS, 259-264, 1991.

    19. C. H. Lin, and G. B. Lee, “Micromachined Flow Cytometers with Embedded Etched Optic Fibers for Optical Detection, ” J. Micromech. Microeng., Vol. 13, 447-453, 2003.

    20. D. Sobek, A. M.Young, M. L. Gray, and S. D.Senturia, “A microfabricated flow chamber for optical measurements in fluids, ” Proc. of the 6th IEEE MEMS, 219-224, 1993.

    21. M. Koch, A. G. R. Evans, and A. Brunnschweiler, “Design and fabrication of a micromachined coulter counter, ” J. Micromechanics Microengineering 9, 159-161, 1999.

    22. D. Huh, H. H. Wei, J. B.Grotberg, and S. Takayama, “Development of stable and tunable high-speed liquid jets in microscale for miniaturized and disposable flow cytometry, ” Proceedings of 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Biology, 449 -452, May, 2002.

    23. L. Cui, T. Zhang, and H. Morgan, “Optical particle detection integrated in a dielectrophoretic lab-on-a-chip, ” J. Micromech. Microeng, 12, 7-12, 2002.

    24. J. Krűger, K. Singh, A. O’Neill, C. Jackson, A. Morrison, and P. O’Brien, “Development of a microfluidic device for fluorescence activated cell sorting, ” J. Micromech. Microeng, 12, 486-494, 2002.

    25. C. H. Lin, G. B. Lee, and B. H. Hwei, “A novel micro flow cytometer with 3-Dimensional Focusing utilizing Dielectrophoreetic and Hydrodynamic Forces, ” Proc. of the IEEE 16th International MEMS Conference, 439-442, 2003.

    26. G. B. Lee, C. I. Hung, B. J. Ke, G. R. Huang, B. H. Hwei, and H. F. Lai, “Hydrodynamic focusing for a micromachined flow cytometer, ” ASME, Journal of Fluids Engineering, 123, 672- 679, 2001.

    27. R. C. Gonzalez, and R. E. Woods, “Digital image processing,” second edition, 2001

    28. H. A. Pohl, “Some effects of nonuniform fields on dielectrics, ” J. Appl. Phys. 29, 1182-1188, 1958.

    29. H. A. Pohl, “Dielectrophoresis,” Cambridge University Press, Cambridge, 1978.
    30. A. D. Goater, and R. Pethig, “Electrorotation and dielectrophoresis, ” Parasitology, 117, S177-S189, 1998.

    31. L. M. Fu, G. B. Lee, Y. H. Lin, and R. J. Yang, “Manipulation of micro-particles using new modes of travelling-wave-dielectrophoretic forces numerical simulation and experiments,” IEEE/ASME Transactions on Mechatronics, 9, 2, 2004.

    32. X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A Unified Theory of Dielectrophoresis and Travelling Wave Dielectrophoresis.” Journal of Physics D: Applied Physics, 27, 1571-1574, 1994.

    33. C. H. Lin, G. B. Lee, Y. H. Lin, and G. L. Chang, “A Fast Prototyping Process for Fabrication of Microfluidic Systems on Soda-Lime Glass, ” J. Micromech. Microeng., 11, 726-732, 2001.

    34. 莊達人, “VLSI製造技術, ” 高立圖書, 第五版, 2003.

    35. P. Agre, and J. C. parker, “Red blood cell membranes:structure, function, clinical implications, ” Dekker, 1989.

    36. A. A. Laogun, N. O. Ajayi, L. O. Okafor, and N. O. Osamo, “Dielectric characteristics of packed human erythrocytes with haemoglobins F, AA, AS and SS, ” Phys. Med. Bio., 28, 4, 341-349, 1983.

    下載圖示 校內:立即公開
    校外:2004-07-16公開
    QR CODE