| 研究生: |
陳彥勲 Chen, Yen-Hsuan |
|---|---|
| 論文名稱: |
以褐藻酸鈉為主的磁性電紡纖維之製備與特性分析,並探討其體外細胞增生及過熱治療效果 Studies of preparation and characterization of the magnetic alginate-based electrospun mats and their in vitro cell proliferation/hyperthermia effect |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 褐藻酸鈉 、過熱治療 、磁性奈米粒子 、電紡絲 、磁性電紡纖維 |
| 外文關鍵詞: | alginate, hyperthermia, magnetic nanoparticles, electrospinning, magnetic electrospun mats |
| 相關次數: | 點閱:139 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,磁性電紡絲纖維(magnetic electrospun mats)已被建立成為癌症過熱治療(hyperthermia)的創新材料。不同於一般常見的表面修飾型磁性奈米粒子(surface-modified magnetic nanoparticles),其可能無法長期牢固地貼覆在腫瘤位置且難以重複使用,磁性電紡纖維可以促進腫瘤細胞的貼覆(cell adhesion)並在變動磁場(alternating magnetic field, AMF)作用下直接加熱毒殺腫瘤細胞。然而,目前多數已發表的磁性纖維材料為無法生物降解型的(non-biodegradable)高分子,且使用了有機溶劑配製電紡溶液。這兩種因素分別留下了使用後如何從體內移除以及殘留物可能造成生物毒性的問題。為了解決這些缺點,本篇論文使用生物降解性與水溶性的褐藻酸鈉(SA)做為電紡纖維的主要材料,製成纖維後分別以離子/共價交聯方法處理。而本篇論文的部分貢獻在於提升SA的交聯方法以解決本實驗室先前的碩士論文(張婉茹於一百學年度撰)所遭遇的問題。交聯後的電紡纖維利用SA可螯合Fe2+的特性做化學共沉澱結合磁粒子(Fe3O4)於纖維表面,獲得產物分別為Fe3O4-SA/PEO mat與Fe3O4-SA/PVA mat。
兩種方法製備的磁性電紡纖維分別以各種定性與定量分析來了解其分子組成、表面形態、結晶性、螯合能力及磁性質等。體外細胞增生的結果顯示兩種磁性纖維無明顯細胞毒性,且皆具有細胞貼覆的性質但以共價交聯組可在生理環境中維持結構完整性(structural integrity)較久。而體外過熱治療實驗結果顯示Fe3O4-SA/PVA mat比同磁性含量的Fe3O4粒子有更好的治療效果。我們認為此材料具有潛力可利用內視鏡/手術方式輸送(endoscopic/surgical delivery)至體內做過熱治療,或是做為術後的傷口清創以避免腫瘤細胞再生。
Recently, magnetic electrospun mats were established as an innovative biomaterial for hyperthermia treatment of cancer therapy. Unlike those surface-modified magnetic nanoparticles that may not firmly adhere onto the tumor site for long-term duration, the magnetic mats with nanofibrous structure can promote cell adhesion and kill the tumor cells within an alternating magnetic field (AMF). However, most published magnetic electrospun mats were fabricated using non-biodegradable polymers and organic solvents, which has led to the issues related to the removal of electrospun mat after therapy as well as the toxicity issue about the residual solvent. To overcome these problems, alginate, which is biodegradable and water-soluble, was utilized in this study as the main material for electrospinning. The alginate-based electrospun mats were crosslinked by an ionic or a covalent method prior to a chemical precipitation for magnetic nanoparticles. Various analyses for the mats were conducted to understand their molecular composition, morphology, crystallinity, chelation ability and magnetic properties. The final magnetic products, termed as Fe3O4-SA/PEO mat and Fe3O4-SA/PVA mat, both showed non-cytotoxicity as examined by the cell proliferation assay. For the in vitro hyperthermia effect, the magnetic alginate-based mats have reduced tumor cells proliferation in the AMF more than the Fe3O4 nanoparticles did. Such magnetic electrospun mats are of potential for endoscopic/surgical delivery for hyperthermia treatment and debridement after surgical removal.
1. T.C. Lin, F.H. Lin, and J.C. Lin, In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomaterialia, 2012. 8(7): p. 2704-11.
2. T.C. Lin, F.H. Lin, and J.C. Lin, In vitro characterization of magnetic electrospun IDA-grafted chitosan nanofiber composite for hyperthermic tumor cell treatment. Journal of Biomaterials Science, Polymer Edition, 2013. 24(9): p. 1152-63.
3. 張婉茹, 製備Fe3O4-褐藻酸鈉/聚氧化乙烯奈米纖維之複合材料,並探討其特性及體外過熱治療效果. 2012: 國立成功大學化學工程學系碩士論文
4. C.M. Haskell and J.S. Berek, Cancer treatment. 5th ed. ed. 2011: W. B. Saunder Company, Philadelphia, USA.
5. American Cancer Society. Treatment Types. Available from: http://www.cancer.org/treatment/treatmentsandsideeffects/treatmenttypes/index.
6. W.L. Scott and W.L. Athena, Apoptosis in cancer. Carcinogenesis, 2000. 21(3): p. 485-495.
7. G.I. Evan and K.H. Vousden, Proliferation, cell cycle and apoptosis in cancer. Nature, 2001. 411: p. 342-348.
8. G.F. Baronzio and E.D. Hager, Hyperthermia in Cancer Treatment: A Primer. 2006: Landes Bioscience and Springer Science+Business Media, LLC.
9. National Cancer Institute. Hyperthermia in Cancer Treatment. Available from: http://www.cancer.gov/cancertopics/factsheet/Therapy/hyperthermia.
10. 近角聰信, 磁性物理學. 1981: 聯經出版事業公司.
11. 李國棟, 無所不在的磁: 粒子磁矩與固體磁性. 2005: 世潮出版有限公司.
12. NDT Resource Center. The Hysteresis Loop and Magnetic Properties. Available from: http://www.ndt-ed.org/EducationResources/CommunityCollege/MagParticle/Physics/HysteresisLoop.htm.
13. 陳奕瀚, 以離子型高分子製備核殼型與中空型奈米磁性複合微粒之研究. 2006: 南台科技大學化學工程研究所碩士論文.
14. S.A. Corr, Y.P. Rakovich, and Y.K. Gun’ko, Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications. Nanoscale Research Letters, 2008. 3(3): p. 87-104.
15. Q.A. Pankhurst, J. Connolly, S.K. Jones, and J. Dobson, Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 2003. 36: p. 167-181.
16. C.S. Kumar and F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 2011. 63(9): p. 789-808.
17. D.L. Huber, Synthesis, properties, and applications of iron nanoparticles. Small, 2005. 1(5): p. 482-501.
18. S.N. Pawar and K.J. Edgar, Alginate derivatization: a review of chemistry, properties and applications. Biomaterials, 2012. 33(11): p. 3279-305.
19. K.Y. Lee and D.J. Mooney, Alginate: properties and biomedical applications. Progress in Polymer Science, 2012. 37(1): p. 106-126.
20. N. Bhardwaj and S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances, 2010. 28(3): p. 325-47.
21. Z.M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
22. M. Miraftab, Q. Qiao, J.F. Kennedy, S.C. Anand, and M.R. Groocock, Fibres for wound dressings based on mixed carbohydrate polymer fibres. Carbohydrate Polymers, 2003. 53(3): p. 225-231.
23. Y. Qin, Alginate fibres: an overview of the production processes and applications in wound management. Polymer International, 2008. 57(2): p. 171-180.
24. H. Qi, P. Hu, J. Xu, and A. Wang, Encapsulation of Drug Reservoirs in Fibers by Emulsion Electrospinning: Morphology Characterization and Preliminary Release Assessment. Biomacromolecules, 2006. 7: p. 2327-2330.
25. C.A. Bonino, M.D. Krebs, C.D. Saquing, S.I. Jeong, K.L. Shearer, E. Alsberg, and S.A. Khan, Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems. Carbohydrate Polymers, 2011. 85(1): p. 111-119.
26. H. Nie, A. He, J. Zheng, S. Xu, J. Li, and C.C. Han, Effects of Chain Conformation and Entanglement on the Electrospinning of Pure Alginate. Biomacromolecules, 2008. 9: p. 1362-1365.
27. N. Bhattarai, Z. Li, D. Edmondson, and M. Zhang, Alginate-Based Nanofibrous Scaffolds: Structural, Mechanical, and Biological Properties. Advanced Materials, 2006. 18(11): p. 1463-1467.
28. S.I. Jeong, M.D. Krebs, C.A. Bonino, S.A. Khan, and E. Alsberg, Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromolecular Bioscience, 2010. 10(8): p. 934-43.
29. N. Bhattarai and M. Zhang, Controlled synthesis and structural stability of alginate-based nanofibers. Nanotechnology, 2007. 18(45): p. 455601.
30. C.C. Zhang, X. Li, Y. Yang, and C. Wang, Polymethylmethacrylate/Fe3O4 composite nanofiber membranes with ultra-low dielectric permittivity. Applied Physics A, 2009. 97(2): p. 281-285.
31. D.Z. Yang, J. Zhang, J.F. Zhang, and J. Nie, Preparation and characteristics of oriented superparamagnetic polymer nanofibres. Plastics, Rubber and Composites, 2010. 39(1): p. 6-9.
32. D. Zhang, A.B. Karki, D. Rutman, D.P. Young, A. Wang, D. Cocke, T.H. Ho, and Z. Guo, Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer, 2009. 50(17): p. 4189-4198.
33. B. Wang, Y. Sun, and H. Wang, Preparation and properties of electrospun PAN/Fe3O4 magnetic nanofibers. Journal of Applied Polymer Science, 2010. 115(3): p. 1781-1786.
34. Y. Xin, Z.H. Huang, L. Peng, and D.J. Wang, Photoelectric performance of poly(p-phenylene vinylene)/Fe3O4 nanofiber array. Journal of Applied Physics, 2009. 105(8): p. 086106.
35. C.-H. Park, S.-J. Kang, L.D. Tijing, H.R. Pant, and C.S. Kim, Inductive heating of electrospun Fe2O3/polyurethane composite mat under high-frequency magnetic field. Ceramics International, 2013. 39(8): p. 9785-9790.
36. M. Wang, H. Singh, T.A. Hatton, and G.C. Rutledge, Field-responsive superparamagnetic composite nanofibers by electrospinning. Polymer, 2004. 45(16): p. 5505-5514.
37. I. Savva, A.D. Odysseos, L. Evaggelou, O. Marinica, E. Vasile, L. Vekas, Y. Sarigiannis, and T. Krasia-Christoforou, Fabrication, characterization, and evaluation in drug release properties of magnetoactive poly(ethylene oxide)-poly(L-lactide) electrospun membranes. Biomacromolecules, 2013. 14(12): p. 4436-46.
38. R. Mincheva, O. Stoilova, H. Penchev, T. Ruskov, I. Spirov, N. Manolova, and I. Rashkov, Synthesis of polymer-stabilized magnetic nanoparticles and fabrication of nanocomposite fibers thereof using electrospinning. European Polymer Journal, 2008. 44(3): p. 615-627.
39. S. Wang, C. Wang, B. Zhang, Z. Sun, Z. Li, X. Jiang, and X. Bai, Preparation of Fe3O4/PVA nanofibers via combining in-situ composite with electrospinning. Materials Letters, 2010. 64(1): p. 9-11.
40. N. Sharma, G.H. Jaffari, S.I. Shah, and D.J. Pochan, Orientation-dependent magnetic behavior in aligned nanoparticle arrays constructed by coaxial electrospinning. Nanotechnology, 2010. 21(8): p. 85707.
41. C. Huang, S.J. Soenen, J. Rejman, J. Trekker, L. Chengxun, L. Lagae, W. Ceelen, C. Wilhelm, J. Demeester, and S.C. De Smedt, Magnetic Electrospun Fibers for Cancer Therapy. Advanced Functional Materials, 2012. 22(12): p. 2479-2486.
42. Y.J. Kim, M. Ebara, and T. Aoyagi, A Smart Hyperthermia Nanofiber with Switchable Drug Release for Inducing Cancer Apoptosis. Advanced Functional Materials, 2013. 23(46): p. 5753-5761.
43. A. Amarjargal, L.D. Tijing, C.H. Park, I.T. Im, and C.S. Kim, Controlled assembly of superparamagnetic iron oxide nanoparticles on electrospun PU nanofibrous membrane: A novel heat-generating substrate for magnetic hyperthermia application. European Polymer Journal, 2013. 49(12): p. 3796-3805.
44. R. Stone, S. Hipp, J. Barden, P.J. Brown, and O.T. Mefford, Highly scalable nanoparticle-polymer composite fiber via wet spinning. Journal of Applied Polymer Science, 2013: p. 1975-1980.
45. 大憲光學-900系列英文說明書, Installation, Use and Maintenance Manual - PowerCube 32/45/64.
46. D.A. Skoog, F.J. Holler, and S.R. Crouch, Principles of Instrumental Analysis. 6 ed. 2007, Thomson.
47. 邱正宇, 掃描式電子顯微鏡簡介. 國立成功大學奈米中心.
48. 羅聖全, 研發奈米科技的基本工具之-電子顯微鏡介紹-TEM. 小奈米大世界.
49. 鄭信民 and 林麗娟, X光繞射應用簡介. 工業材料雜誌, 2002(181): p. 100-108.
50. 楊鴻昌, 最敏感的感測元件 SQUID 及其前瞻性應用. 物理雙月刊, 2002. 24(5): p. 652-665.
51. S.D. Gan and K.R. Patel, Enzyme immunoassay and enzyme-linked immunosorbent assay. Journal of Investigative Dermatology, 2013. 133(9): p. e12.
52. L. Chen, C. Zhu, D. Fan, B. Liu, X. Ma, Z. Duan, and Y. Zhou, A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility. Journal of Biomedical Materials Research Part A, 2011. 99(3): p. 395-409.
53. E. Kroll, F.M. Winnik, and R.F. Ziolo, In Situ Preparation of Nanocrystalline γ-Fe2O3 in Iron(II) Cross-Linked Alginate Gels. Chemistry of Materials, 1996. 8: p. 1594-1596.
54. N. Fang, W.J. Tan, K.W. Leong, H.Q. Mao, and V. Chan, pH responsive adhesion of phospholipid vesicle on poly(acrylic acid) cushion grafted to poly(ethylene terephthalate) surface. Colloids and Surfaces B: Biointerfaces, 2005. 42(3-4): p. 245-52.
55. M.M. Fouda, M.R. El-Aassar, and S.S. Al-Deyab, Antimicrobial activity of carboxymethyl chitosan/polyethylene oxide nanofibers embedded silver nanoparticles. Carbohydrate Polymers, 2013. 92(2): p. 1012-7.
56. H.S. Mansur, C.M. Sadahira, A.N. Souza, and A.A.P. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering: C, 2008. 28(4): p. 539-548.
57. Y.C. Ho, F.L. Mi, H.W. Sung, and P.L. Kuo, Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor. International Journal of Pharmaceutics, 2009. 376(1-2): p. 69-75.
58. S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, and F.K. Katsaros, Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydrate Research, 2010. 345(4): p. 469-73.
59. J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, and M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of Biomedical Materials Research Part A, 2007. 80(2): p. 333-41.
60. S. Sharma, P. Sanpui, A. Chattopadhyay, and S.S. Ghosh, Fabrication of antibacterial silver nanoparticle—sodium alginate–chitosan composite films. RSC Advances, 2012. 2(13): p. 5837.
61. T. Uyar and F. Besenbacher, Electrospinning of cyclodextrin functionalized polyethylene oxide (PEO) nanofibers. European Polymer Journal, 2009. 45(4): p. 1032-1037.
62. S. Morimune, T. Nishino, and T. Goto, Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polymer Journal, 2012. 44(10): p. 1056-1063.
63. Z. Durmus, H. Sözeri, B. Unal, A. Baykal, R. Topkaya, S. Kazan, and M.S. Toprak, Magnetic and dielectric characterization of alginic acid–Fe3O4 nanocomposite. Polyhedron, 2011. 30(2): p. 322-328.
64. Nanocomposites with Biodegradable Polymers: Synthesis, Properties, and Future Perspectives. Monographs on the Physics and Chemistry of Materials, ed. V. Mittal. 2011, Oxford: Oxford University Press. 448.