| 研究生: |
李健豪 Lee, Jian-Hao |
|---|---|
| 論文名稱: |
環保型鈉離子電池材料特性與充放電機制研究 A Study on Material Characteristics and Charge-discharge Mechanism of Eco-friendly Sodium-ion Battery |
| 指導教授: |
洪飛義
Hung, Fei-Yi 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 鈉電池 、電解液 、固態電解質 、天然礦鹽 、充放電 |
| 外文關鍵詞: | Sodium battery, Electrolyte solution, Solid electrolyte, Natural ore, Charge and discharge |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前常見的商用電池與儲能裝置常為鋰離子電池,但鋰離子電池常用的有機電解液,具有易燃與高揮發性等缺點,遇水會產生劇毒氣體,若使用不慎,將導致爆炸與環境汙染。本研究採用的鈉離子電池系統,不使用有機電解液,選擇水溶液電解質與固態電解質進行實驗,以提高電池的使用安全性並兼顧環境保護。
本實驗使用水溶液電解質組成濕式鈉離子電池,其中鈉鹽選擇磷酸鈉,兩種正極材料選用鈉錳氧與鈉錳鐵氧化合物,負極則使用碳黑。實驗結果顯示,使用磷酸鈉水溶液作為電解液時,上述兩種正極皆能有效進行循環充放電測試。此外,添加適量硝酸鐵共同燒結的鈉錳鐵氧化合物,能使電極結構在充放電時更穩定,同時減少錳離子在磷酸鈉電解液中溶出,使平均放電克容量與維持率提升。
在固態電解質部分,本研究使用分布廣泛且價格低廉的天然鈉礦鹽作為固態電解質材料,與鈉錳氧正極跟碳黑負極組成乾式鈉離子電池進行研究。天然鈉礦鹽因層間陽離子在(001)晶面層間吸附水的幫助,能有效地與電極進行傳遞與嵌脫,故天然鈉礦鹽全電池在室溫下就有極佳的離子導電率。考量天然鈉礦鹽中,層間鈉離子含量較少,故放電克容量偏低。因此,本研究亦針對天然鈉礦鹽進行兩步驟成分改質,使表面鈉離子濃度提高。實驗結果顯示,兩步驟改質可使負極與電解質交界處產生固態電解質界面膜,能幫助鈉離子進行嵌脫反應,使電池放電克容量表現顯著上升。
採用磷酸鈉電解液之濕式鈉離子電池與改質天然鈉礦鹽電解質之乾式鈉離子電池,皆展現良好的放電表現與穩定性,且同時具有價格低廉、安全與環境友善等優點,可供儲能產業應用於海濱與水源保護區等場域。
Lithium-ion batteries are common commercial batteries and energy storage devices, but organic electrolytes commonly used in lithium-ion batteries have shortcomings such as flammability and high volatility, which are harmful to the environment. The sodium-ion batteries used in this study does not use an organic electrolyte, but an aqueous electrolyte and a solid electrolyte to improve the safety and environmental protection.
The aqueous sodium-ion battery is composed of Na3PO4 (aq) as the electrolyte, Na-Mn-O and Na-Mn-Fe-O as the cathodes, and carbon black as the anode. The experimental results show that both of the batteries are effective to the cyclic charge-discharge test. In addition, adding an appropriate amount of Fe(NO3)3·9H2O for sintering can make the structure more stable during charge and discharge, and at the same time reduce the dissolution of Mn ions in the electrolyte, so that the average discharge capacity and retention rate are improved.
The solid-state sodium-ion battery is composed of natural sodium ore as the solid electrolyte, Na-Mn-O as the cathode and carbon black as the anode. Natural sodium ore has excellent ionic conductivity at room temperature due to the adsorption water between the (001) interlayers. Considering the low interlayer sodium ion content of the natural sodium ore, this study also modified the natural sodium ore to increase the surface sodium ion concentration. The experimental results show that the two-step modification can create a solid electrolyte interface (SEI) between the anode and the electrolyte, thereby significantly increasing the discharge capacity of the battery.
This study uses an aqueous electrolyte and a solid electrolyte to assemble the low-cost, eco-friendly and high-safety batteries with excellent discharge capacity and stability.
1. Y. J. Fang, Z. X. Chen, X. P. Ai, H. X. Yang and Y. L. Cao, Recent Developments in Cathode Materials for Na Ion Batteries, Acta Physico-Chimica Sinica, 33(1), 211-241, 2017.
2. V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-González and T. Rojo, Na-ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems, Energy & Environmental Science, 5, 5884-5901, 2012.
3. D. Aurbach, Y. Gofer, Z. Lu, A. Schechter, O. Chusid, H. Gizbar, Y. Cohen, V. Ashkenazi, M. Moshkovich, R. Turgeman and E. Levi, A Short Review on the Comparison Between Li Battery Systems and Rechargeable Magnesium Battery Technology, Journal of Power Sources, 97-98, 28-32, 2001.
4. P. Wang, H. Chen, N. Li, X. Zhang, S. Jiao, W. L. Song and D. Fang, Dense graphene papers: Toward Stable and Recoverable Al-ion Battery Cathodes with High Volumetric and Areal Energy and Power Density, Energy Storage Materials, 13, 103-111, 2018.
5. N. Zhang, Y. C. Liu, C. C Chen, Z. L. Tao and J. Chen, Research on Electrode Materials for Sodium-ion Batteries, Chinese Journal of Inorganic Chemistry, 31(9), 1739-1750, 2015.
6. D. Saurel, M. Galceran, M. Reynaud, H. Anne and M. Casas‐Cabanas, Rate Dependence of the Reaction Mechanism in Olivine NaFePO4 Na‐ion Cathode Material, 42, 3258-3265, 2018.
7. M. Law, V. Ramar and P. Balaya, Na2MnSiO4 as an Attractive High Capacity Cathode Material for Sodium-ion Battery, Journal of Power Sources, 359, 277-284, 2017.
8. R. V. Panin, O. A. Drozhzhin, S. S. Fedotov, N. R. Khasanova and E. V. Antipov, NASICON-type NaMo2(PO4)3: Electrochemical Activity of the Mo+4 Polyanion Compound in Na-cell, Electrochimica Acta, 289, 168-174, 2018.
9. P. Marzak, J. Yun, A. Dorsel, A. Kriele, R. Gilles, O. Schneider and A. S. Bandarenka, Electrodeposited Na2Ni[Fe(CN)6] Thin-Film Cathodes Exposed to Simulated Aqueous Na-ion Battery Conditions, The Journal of Physical Chemistry, 122, 8760-8768, 2018.
10. W. Tang, Y. Y. Xie, F. W. Peng, Y. Yang, F. Feng, X. Z. Liao, Y. S. He, Z. F. Ma, Z. H. Chen and Y. Ren, Electrochemical Performance of NaFeFe(CN)6 Prepared by Solid Reaction for Sodium Ion Batteries, Journal of The Electrochemical Society, 165(16), A3910-A3917, 2018.
11. F. D. Hu, L. Li and X. L. Jiang, Hierarchical Octahedral Na2MnFe(CN)6 and Na2MnFe(CN)6@Ppy as Cathode Materials for Sodium-ion Batteries, Chinese Journal of Chemistry, 35(4), 415-419, 2017.
12. F. Sauvage, L. Laffont, J. M. Tarascon and E. Baudrin, Study of the Insertion/Deinsertion Mechanism of Sodium into Na0.44MnO2, Inorganic Chemistry, 46(8), 3289-3294, 2007.
13. E. Hosono, T. Saito, J. Hoshino, M. Okubo, Y. Saito, D. Nishio-Hamane, T. Kudo and H. Zhou, High Power Na-ion Rechargeable Battery with Single-crystalline Na0.44MnO2 Nanowire Electrode, Journal of Power Sources, 217, 43-46, 2012.
14. G. Ma, Y. Zhao, K. Huang, Z. Ju, C. Liu, Y. Hou and Z. Xing, Effects of the Starting Materials of Na0.44MnO2 Cathode Materials on their Electrochemical Properties for Na-ion Batteries, Electrochimica Acta, 222, 36-43, 2016.
15. X. K. Ju, H. Huang, H. F. Zheng, P. Deng, S. Y. Li, B. H. Qu and T. H. Wang, A Facile Method to Hunt for Durable High-rate Capability Na0.44MnO2, Journal of Power Sources, 395, 395-402, 2018.
16. J. P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier and P. Hagenmuller, Sur Quelques Nouvelles Phases de Formule NaxMnO2 (x≤1), Journal of Solid State Chemistry, 3, 1-11, 1971.
17. R. J. Clément, D. S. Middlemiss, I. D. Seymour, A. J. Ilott and C. P. Grey, Insights into the Nature and Evolution upon Electrochemical Cycling of Planar Defects in the β‑NaMnO2 Na-ion Battery Cathode: An NMR and First-Principles Density Functional Theory Approach, Chemistry of Materials, 28, 8228-8239, 2016.
18. J. Billaud, R. J. Clément, A. R. Armstrong, J. Canales-Vázquez, P. Rozier, C. P. Grey and P. G. Bruce, β‑NaMnO2: A High-Performance Cathode for Sodium-ion Batteries, Journal of The American Chemical Society, 136, 17243-17248, 2014.
19. C. Z. Fan, S. Liu, C. H. Li and X. Z. You, Syntheses and Charge-discharge Properties of Crystallite Na0.7MnO2.05 in Water Solutions, Chinese Journal of Inorganic Chemistry, 27(11), 2138-2142, 2011.
20. Y. Hou, H. W. Tang, B. Li, K. Chang, Z. R. Chang, X. Z. Yuan and H. J. Wang, Hexagonal-layered Na0.7MnO2.05 via Solvothermal Synthesis as an Electrode Material for Aqueous Na-ion Supercapacitors, Materials Chemistry and Physics, 171, 137-144, 2016.
21. J. S. Thorne, R. A. Dunlap and M. N. Obrovac, Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 ≤ x ≤ 0.5) for Na-ion Battery Positive Electrodes, Journal of The Electrochemical Society, 160(2), A361-A367, 2013.
22. D. D. Yuan, W. He, F. Pei, F. Y. Wu, Y. Wu, J. F. Qian, Y. L. Cao, X. P. Ai and H. X. Yang, Synthesis and Electrochemical Behaviors of Layered Na0.67[Mn0.65Co0.2Ni0.15]O2 Microflakes as a Stable Cathode Material for Sodium-ion Batteries, Journal of Materials Chemistry A, 1, 3895-3899, 2013.
23. M. D. Slater , D. Kim , E. Lee and C. S. Johnson, Sodium-ion Batteries, Advanced Functional Materials, 23(8), 947-958, 2013.
24. S. B. Yang, W. Dong, D. Shen, S. N. Li, Z. J. Wang, J. M. Zhang, W. Sun and Q. Zhang, Research Progress of Anode Material for Sodium-ion Batteries, The Chinese Journal of Nonferrous Metals, 26(5), 1054-1064, 2016.
25. D. W. Su, H. J. Ahnb and G. X. Wang, SnO2@graphene Nanocomposites as Anode Materials for Na-ion Batteries with Superior Electrochemical Performance, Chemical Communications, 49, 3131-3133, 2013.
26. W. Luo, Z. L. Jian, Z. Y. Xing, W. Wang, C. Bommier, M. M. Lerner and X. L. Ji, Electrochemically Expandable Soft Carbon as Anodes for Na-ion Batteries, American Chemical Society, 1(9), 516-522, 2015.
27. S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh and K. Fujiwara, Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-carbon Electrodes and Application to Na-ion Batteries, Advanced Functional Materials, 21(20), 3859-3867, 2011.
28. K. L. Huang, Z. X. Wang and S. Q. Liu, Lithium-ion Batteries - Principles and Key Technologies, Wunan Book Company Limited, 2010.
29. Y. Wen, K. He, Y. J. Zhu, F. D. Han, Y. H. Xu, I. Matsuda, Y. Ishii, J. Cumings and C. S. Wang, Expanded Graphite as Superior Anode for Sodium-ion Batteries, Nature Communications, 5, 2014.
30. Y. S. Wu and C. Y. Hsia, Natural Graphite Coated with Soft and Hard Carbon as Lithium-ion Battery Anode Materials, Journal of China University of Science and Technology, 50, 15-33, 2012.
31. A. Beda, P. L. Taberna, P. Simon and C. M. Ghimbeu, Hard Carbons Derived from Green Phenolic Resins for Na-ion Batteries, Carbon, 139, 248-257, 2018.
32. A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson and M. R. Palacin, Non-aqueous Electrolytes for Sodium-ion Batteries, Journal of Materials Chemistry A, 3, 22-42, 2015.
33. S. Liu, L. Y. Shao, X. J. Zhang, Z. L. Tao and J. Chen, Advances in Electrode Materials for Aqueous Rechargeable Sodium-ion Batteries, Acta Physico-Chimica Sinica, 34(6), 581-597, 2018.
34. M. Minakshi, D. Meyrick and D. Appadoo, Maricite (NaMn1/3Ni1/3Co1/3PO4)/Activated Carbon: Hybrid Capacitor, Energy & Fuels, 27(6), 3516-3522, 2013.
35. Y. D. Zhang, P. Nie, C. Y. Xu, G. Y. Xu, B. Ding, H. Dou and X. G. Zhang, High Energy Aqueous Sodium-ion Capacitor Enabled by Polyimide Electrode and High-concentrated Electrolyte, Electrochimica Acta, 268, 512-519, 2018.
36. 許朝政,固態鎂基鹽質離子導體材料特性與充放電機制研究,國立成功大學材料科學及工程學系碩士論文,民國107年。
37. W. R. Hou, X. W. Guo, X. Y. Shen, K. Amine, H. J. Yu and J. Lu, Solid Electrolytes and Interfaces in All-solid-state Sodium Batteries: Progress and Perspective, Nano Energy, 52, 279-291, 2018.
38. W. D. Richards, T. Tsujimura, L. J. Miara, Y. Wang, J. C. Kim, S. P. Ong, I. Uechi, N. Suzuki and G. Ceder, Design and Synthesis of the Superionic Conductor Na10SnP2S12, Nature Communication, 7, 2016.
39. Z. X. Yu, S. L. Shang, J. H. Seo, D. W. Wang, X. Y. Luo, Q. Q. Huang, S. R. Chen, J. Lu, X. L. Li, Z. K. Liu and D. H. Wang, Exceptionally High Ionic Conductivity in Na3P0.62As0.38S4 with Improved Moisture Stability for Solid-state Sodium-ion Batteries, Advanced Materials, 29(16), 2017.
40. A. Ubowska, Montmorillonite as a Polyurethane Foams Flame Retardant, Archivum Combustionis, 30(4), 459-462, 2010.
41. T. Tsuji, M. Nagao, Y. Yamamura and N. T. Tai, Structural and Thermal Properties of LiMn2O4 Substituted for Manganese by Iron, Solid State Ionics, 154-155, 381-386, 2002.
42. M. Chang, H. L. Yun, S. S. Dong, L. Y. Zhang, M. M. Zhen, Y. Y. Jiao and H. W. Yu, Infrared Spectroscopy Study of Sodium Bicarbonate, Infrared Technology, 38(9), 803-810, 2016.
43. Y. Zhang, Z. Su, X. Yao and Y. B. Wang, Synthesis and Electrochemical Properties of Monoclinic Fluorine-doped Lithium Manganese Oxide (LixMnO2-yFy) for Lithium Secondary Batteries, Royal Society of Chemistry Advances, 5, 90150-90157, 2015.
44. Q. Feng, E. H. Sun, K. Yanagisawa and N. Yamasaki, Synthesis of Birnessite-type Sodium Manganese Oxides by Solution Reaction and Hydrothermal Methods, Journal of The Ceramic Society of Japan, 105(7), 564-568, 1997.
45. E. Omari, M. Omari and D. Barkat, Oxygen Evolution Reaction over Copper and Zinc Co-doped LaFeO3 Perovskite Oxides, Polyhedron, 156, 116-122, 2018.
46. O. Kammori, N. Yamaguchi and K. Sato, Infrared Absorption Spectra of Metal Oxides, Bunseki kagaku, 16(10), 1050-1055, 1967.
47. R. Baddour-Hadjean and J. P. Pereira-Ramos, Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries, Chemical Reviews, 110(3), 1278-1319, 2010.
48. N. Karikalan, C. Karuppiah, S. M. Chen, M. Velmurugan and P. Gnanaprakasam, Three-dimensional Fibrous Network of Na0.21MnO2 for Aqueous Sodium-ion Hybrid Supercapacitors, Chemistry-A European Journal, 23(10), 2379-2386, 2017.
49. M. Yoncheva, R. Stoyanova, E. Zhecheva, E. Kuzmanova, M. Sendova-Vassileva, D. Nihtianova, D. Carlier, M. Guignard and C. Delmas, Structure and Reversible Lithium Intercalation in a New P’3-phase: Na2/3Mn1-yFeyO2 (y=0, 1/3, 2/3), Journal of Materials Chemistry, 22, 23418-23427, 2012.
50. R. Z. Xiao, T. Hu, X. B. Yuan, J. J. Zhou, X. Q. Ma and D. J. Fu, Studies of La- and Pr-driven Reverse Distortion of FeO6 Octahedral Structure, Magnetic Properties and Hyperfine Interaction of BiFeO3 Powder, Royal Society of Chemistry, 8, 12060-12068, 2018.
51. X. Q. Liu, G. J. Han, C. K. Huang and W. Lan, Thickness Dependence of Microstructure for La0.9Sr0.1MnO3/Si Films Determined by Micro-raman Spectroscopy, Acta Physica Sinica, 58(11), 8008-8013, 2009.
52. Y. S. Du, X. F. Zhang, D. B. Yu, T. Li and H. Yan, Effect of Annealing Procedures on the Structural and Magnetic Properties of La0.7Sr0.3MnO3 Films Deposited on Different Substrates, Chinese Journal of Low Temperature Physics, 28(3), 343-347, 2006.
53. M. H. Han, E. Gonzalo, G. Singh and T. Rojo, A Comprehensive Review of Sodium Layered Oxides: Powerful Cathodes for Na-ion Batteries, Energy & Environmental Science, 8(1), 81-102, 2015.
54. Z. R. Liu, M. A. Uddin and Z. X. Sun, FT-IR and XRD Analysis of Natural Na-bentonite and Cu(II)-loaded Na-bentonite, Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 79(5), 1013-1016, 2011.
55. N. Xue, L. Y. Wang, M. S. Pei, Y. J. He, Y. K. Du and W. J. Guo, Preparation and Characterization of Sodium Polyacrylate-grafted Bentonite and its Performance Removing Pb2+ from Aqueous Solutions, Royal Society of Chemistry Advances, 6(101), 98945-98951, 2016.
56. Y. M. Chen, B. Liu, A. N. Zhou and J. Liang, Preparation, Structure and Properties of Cetirizine Hydrochloride/ Montmorillonite Nanocomposites, Acta Materiae Compositae Sinica, 27(1), 43-50, 2010.
57. J. M. Andanson and S. G. Kazarian, In situ ATR-FTIR Spectroscopy of Poly(ethylene terephthalate) Subjected to High-Temperature Methanol, Macromolecular Symposia, 265, 195-204, 2008.
58. T. Kozlowski and E. Nartowska, Unfrozen Water Content in Representative Bentonites of Different Origin Subjected to Cyclic Freezing and Thawing, Vadose Zone Journal, 12(1), 2013.
59. J. F. Ni, H. H. Zhou, J. T. Chen and G. Y. Su, Progress in Solid Electrolyte Interface in Lithium Ion Batteries, Progress in Chemistry, 16(3), 335-342, 2004.
60. A. P. Wang, S. Kadam, H. Li, S. Q. Shi and Y. Qi, Review on Modeling of the Anode Solid Electrolyte Interphase (SEI) For Lithium-ion Batteries, NPJ Computational Materials, 4, 2018.
校內:2024-07-05公開