| 研究生: |
周映暶 Chou, Ying-Hsuan |
|---|---|
| 論文名稱: |
生物可分解(聚羥基丁酸酯共聚羥基戊酸酯)與不定型態聚醋酸乙烯作用下之環狀消光環球晶內之晶板組裝 Lamellar Assembly in Ring-Banded Spherulitic Morphology of Biodegradable Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)Interacting with Amorphous Poly(vinyl acetate) |
| 指導教授: |
吳逸謨
Woo, Eamor |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 晶板 、消光環球晶 |
| 外文關鍵詞: | lamellar, ring band |
| 相關次數: | 點閱:70 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用微分掃描式熱卡計(DSC)、偏光顯微鏡(POM)、掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)以及小角度X-光散射儀(SAXS)來探討聚羥基丁酸酯共聚羥基戊酸酯(poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV)和聚醋酸乙烯(poly(vinyl acetate), PVAc)此兩成分摻合系統的相容性、結晶動力、球晶型態以及晶板的構造。由PHBV/PVAc於各組成皆存在單一玻璃轉移溫度,以及均相相型態,可知PHBV與PVAc為相容系統,且PHBV/PVAc系統之作用力參數為-0.32。然而,在球晶成長速率方面,相較於neat PHBV,加入PVAc以後的混摻系統其球晶成長速率會受到抑制,PHBV的球晶成長速率隨著PVAc組成增加而下降,且產生最大球晶成長速率的溫度隨PVAc組成增加往高溫移動。Neat PHBV於Tc=60~110℃時會產生具有環狀消光環的球晶(ring-banded spherulites),然而隨著PVAc組成含量的增加,球晶消光環的規則度提高,且inter-ring spacing 會有下降的趨勢。此外,將試樣製備成塊材,觀察內部型態,可發現不論在內部抑或表面,都可產生具有消光環的球晶。更進一步的將試樣經過蝕刻的處理之後,在OM下觀察可發現,原本亮帶的部分會轉變為暗帶。而由AFM結果可知,消光環的ridge及valley處,主要分別由edge-on及flat-on的晶板構成。另外,使用不同Tmax處理試樣,在偏光顯微鏡下發現Tmax較高時,球晶成核密度會降低,球晶尺寸會變大。然而,經蝕刻之後的試樣,可發現在Tmax為190℃和220℃皆會發現在環狀帶中間都會有相反方向生長的晶板。從SAXS可以更進一步得知,PHBV和PVAc之間的排列,當Tmax較低時,晶板較厚且不定型成分(PVAc)較易進入PHBV結晶的interlamellar的區域。
Polarized-light optical microscopy (POM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS) techniques were used to probe the phase behavior and crystalline morphology in blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with poly(vinyl acetate) (PVAc). DSC thermal analysis and OM characterization proved that PHBV was miscible with PVAc. A small negative value of the interaction parameters (χ12= -0.32 for PHBV/PVAc blend) was obtained with the melting-point depression method. By compared with the growth rate of neat PHBV at crystallization temperature 60~100oC, those of PHBV in blends decrease with increasing PVAc contents. In addition, the growth rates of PHBV in blends of all compositions show a maximum value with respect to crystallization temperature (Tc), while Tc at which the maximum growth rate occurs is dependent on blend composition. Neat PHBV shows ring-banded spherulites at Tc = 60~110oC. However, the ring-banded patterns of PHBV in PHBV/PVAc blends crystallized at the same Tc become regular and the inter-ring spacing decreases with increasing PVAc contents. In addition, ringed textures of PHBV spherulites in blends are also observed in the fracture surface of bulk form samples. The AFM characterizations on the ring-banded spherulite of blend show that the ridge and valley regions of ring bands consist of edge-on and flat-on lamellae, respectively. A solvent-etching method was used to investigate the ring-banded spherulites of PHBV. The ridge bands of PHBV spherulites in un-etched and solvent-etched samples correspond to the bright and dark bands, respectively, under optical microscopy (OM) observation. The maximum melting temperature (Tmax) affects the morphology of the ring-banded spherulites. The spherulites of PHBV and PHBV/PVAc blends become larger after melting at higher Tmax, indicative of a decrease in nucleation density. Upon melting at a lower Tmax, the thickness of crystalline phase is thicker and PVAc is more easily located in interlamellar region compared to those melted at a higher Tmax.
1. Huang, Y. Y.; Chen, H. L.; Hashimoto, T. Macromolecules 2003, 36, 764.
2. Zhang, X. H.; Wang, Z. G.; Muthukumar M.; Han, C. C. Macromol. Rapid Commun 2005, 26, 1285.
3. Andrienko, D.; Leon, S.; Delle Site, L.; Kremer, K. Macromolecules 2005, 38, 5810,
4. Zhou, N.; Lodge, T. P.; Bates, F. S. J. Phys. Chem. B 2006, 110, 3979.
5. Ho, R. M.; Chang, C. C.; Chung, Y. W.; Chiang, Y. W.; Wu, J. Y. Polymer 2003, 44, 1459.
6. Hsu, J. Y.; Nandan, B.; Chen, M. C.; Chiu, F. C.; Chen, H. L. Polymer 2005, 46, 11837,.
7. He, A. H.; Han, C. C.; Yang, G. S. Polymer 2004, 24, 8231.
8. Kim, Y. J.; Uyama, H.; Kobayashi, S. Macromolecules 2003, 36, 5058.
9. Van Casteren, I. A.; Van Trier, R. A. M.; Goossens, J. G. P.; Meijer, H. E. H.; Lemstra, P. J. J. Polym. Sci. Part B Polym. Phy. 2004, 42, 2137.
10. Anantawaraskul, S.; Soares, J. B. P.; Wood-Adamx, P. M. Macromol. Chem. Phys. 2004, 205, 771.
11. Bank, M.; Leffingwell, J.; Thies, C. Macromolecules 1971, 6, 43.
12. Nishimoto, M.; Keskkula, H.; Paul, D. R. Polymer 1971, 32, 272.
13. Walsh, D. J.; Higgins, J. S.; Maconndchie, A. “Polymer Blends and Mixtures”, Mijhoff Publishers, Boston, 1985.
14. Landry, C. J. T.; Yang, H.; Machell, J. S. Polymer 1991, 32, 44.
15. Coleman, M. M.; Moskala, E. J. Polymer 1983, 24, 251.
16. Varnell, D. F.; Moskalk, E. J.; Painter, P. C.; Coleman, M. M. Polym. Eng. Sci. Phy. Ed., 23, 658, 1983.
17. Eisengerg, A.; Hara, M. Polym. Eng. Sci. 1984, 24, 1306.
18. Aubin, M.; Bedard, Y.; Morrissette, M. F.; Prudhomme, R. E. J. Polym.Sci. Phys. Ed., 21, 233, 1983.
19. Rodriguez-Parada, J. M.; Percec, V. Macromolecules 1986, 19, 55.
20. Lu, J. M.; Qiu, Z. B.; Yang, W. T. Polymer 2007, 48, 4196.
21. Tokiwa Y.; Suzuki T.; J. Appl. Polm. Sci. 1981, 26, 441.
22. Hu, Y.; Zhang, JM.; Sato, H.; Futami, Y.; Noda, I; Ozaki, Y. Macromolecules 2006, 39, 3841.
23. Iriondo, P.; Iruin, J. J.; Fernandez-Berridi, M. J. Macromolecules 1996, 29, 5605.
24. Iriondo, P.; Iruin, J. J.; Fernandez-Berridi, M. J. Polymer 1995, 36, 3235.
25. Xing, P.; Ai, X.; Dong, L.; Feng, Z. Macromolecules 1998, 31, 6898.
26. Yang, H.; Ze_Sheng, L.; Qian, H. H.; Yang, Y. B.; Zhang, X. B.; Sun, C. C. Polymer 2004, 45, 453.
27. Na, Y. H.; Asakawa, N.; Yashie, N.; Inoue, Y. Macromolecules 2002, 35, 727
28. N. Lotti, M. Pizzoli, G. Ceccorulli, M. Scandola, Polymer 1993, 34, 4935.
29. Chen, C.; Yu, P. H. F.; Cheung, M. K. J. Appl. Polym. Sci, 2005, 98, 736
30. Doi, Y.; Kitamura, S.; Abe, H. Macromolesules 1995, 28, 4822
31. Watanabe, T.; He, Y.; Fukuchi, T.; Inoue, Y. Macromol. Biosci 2001, 1, 75
32. Asrar, J.; Valentin, H. E.; Berger, P. A.; Tran, M.; Padgette, S. R.; Garbow, J. R. Biomacromolecules 2002, 3,1006
33. Qiu, Y. Z.; Ouyang, S. P.; Shen, Z.; Wu, Q.; Chen, G. Q. Macromol. Biosci. 2004, 4, 255
34. Ouyang, S. P.; Liu, Q.; Fang, L.; Chen, G. Q. Macromol. Biosci. 2007, 7, 227
35. Doi Y. Microbiology polyester. New York: VCH Publishers Inc.; 1990
36. Mitomo, H,; Barham, P.J.; Keller, A. Polymer J. 1987, 19, 1241
37. Holmes, P.A.; In:Bassett DC, editor. Developments is crystalline polymers-2. Amsterdam: Elsevier; 1988.
38. Holmes PA.”Developments in Crystalline polymers-2” (Ed Bassett DC), Elsevier, Amsterdam, 1988.
39. Bluhm, T. L.; Hamer, G.. K.; Marchessault, R.H.; Fyfe, C.A.; Veregin, R.P. Macromolecules 1986,19, 2871
40. Kunioka, M.; Tamaki, A.; Doi, Y. Macromolecules 1989, 22, 694.
41. Scandola, M.; Ceccorulli, G.; Pizzoli, M.; Gazzano, M. Macromolecules 1992, 25, 1405.
42. Yamada, S.; Wang, L.; Asakawa, N.; Yoshie, N.; Inoue, Y. Macromolecules 2001, 34, 4659.
43. Gunaratne, L. M. W. K.; Shanks, R. A. Eur. Polym, J. 2005, 41, 2980.
44. Yoshie, N.; Saoito, M.; Inoue, Y. Macromolecules 2001, 34, 8953
45. Barker, P. A.; Barham, P. J, Polyme 1997, 38, 913
46. Sawayanagi, T.; Tanaka, T.; Iwate, T.; Abe, H.; Doi, Y.; Ito, K.; Fujisawa, T.; Fujita, M, Macromolecules 2007, 40, 2392
47. Wang, Z.; Li, Y.; Yang, J.; Gou, Q.; Wu, Y.; Wu, X.; Liu, P.; Gu.Q, Macromoleculaes 2010, 43, 4441
48. Zheng, L. L.; Goh, S. H.; Lee, S. Y.; Hee, G. R. Polymer 2000, 41, 1429.
49. Russell, T. P.; Ito, H.; Wignall, G. D. Macromolecules 1988, 21, 1703
50. Warner, F. P.; Stein, R. S.; MacKnight, W. J. J. Polym. Sci, Polym Phy. Ed. 1977, 15, 2113
51. Keith, H. D.; Padden, F. J. Jr. J. Appl. Phys., 1964, 35, 1270
52. Woo, E. M.; Wu, P. L. Colloid Polym. Sci. 2006, 284, 357
53. Huang, Y. P.; Kuo, J. F.; Woo, E. M. Polym. Int, 2001, 51, 55
54. Hashida, T.; Jeong, Y. G.; Hua, Y.; Hsu, S. L.; Paul, C. W. Macromolecules 2005, 38, 2876
55. Woo, E. M.; Chang, C. S.; Wu, M. C. Materials Letters, 2007, 61, 3542
56. Chiu S. C.; Smith T. G., Journal of Applied Polymer Science, 1984, 29, 1797
57. Miao, L.; Qiu, Z.; Yang, W.; Ikehara, T.; Reactive & Functional Polymers ,2008, 68, 446
58. Chun,Y.S.; Kim, W.N., Polymer, 2000, 41, 2305
59. Qiu, Z.; Ikehara, T.; Nishi, T., Polymer, 2003, 44, 7519.
60. Ferreira, B. M. P.; Zavaglia, C. A. C.; Duek, E. A. R.;Journal of Applied Polymer Science,. 2002, 86, 2898
61. Qiu, Z.; Fujinami, S.; Komura, M.; Nakajima, K.; Ikehara, T.; Nishi, T.,Polymer 2004, 45, 4355.
62. Tan, S. M .; Ismail, J.; Kummerlowe, C.; Kammer, H. W., Journal of Applied Polymer Science, 2006, 101, 2776
63. Serrano, B.; Pierola, I. F.; Bravo, J.; Baselga, J.; J. Master. Process. Tech., 2003, 141, 123
64. Guo, Q.; Liu, Z.; J. Term. Anal. Calorim., 2000, 59, 101
65. Gajria, A. M.; Dave, V.; Gross, R. A., McCarthy, S. P., Polymer, 1996, 37, 437
66. Kalfoglu, N. K., J. Polym. Sci.: Polym. Phys. Ed., 1982, 20, 1259.
67. Morra, B.; Stein, R. S., J. Polym. Sci. B, 1982, 20, 2261
68. Nojima S.; Watanabe K.; Zheng Z.; Ashida T. Polym. J., 1988, 20, 823.
69. Keith, H. D.; Padden, F. J., Jr.; Russell, T. P. Macromolecules 1989, 22, 666.
70. Wang, Z.; Jiang, B. Z. Macromolecules 1997, 30, 6223
71. Wang, Z.; Wang, X.; Yu D.; Jiang. B. Z., Polymer 1997, 38, 5897
72. Wang, Z.; Wang, X.; An L.; Jiang, W.; Jiang, B.; Wang, X. J Polym. Sci Part B: Polym. Phys. 1999, 37, 2682.
73. Li, W.; Yan, R.; Jiang, X.; Jiang, B. Macromol. Sci. Phys. 1992, B31, 227.
74. Wang, Z.; An, L.; Jiang, B.; Wang, X. Macromol. Rapid Commun., 1998, 19, 131.
75. Keller, A. J. Polym. Sci. 1955, 17, 291
76. Keller, A. J. Polym. Sci. 1955, 39, 151
77. Keith, H. D.; Padden F. J., Jr. Macromolecules 1996, 29, 7776
78. Keith, H. D. Polymer 2001, 42, 9987
79. Tanaka, H.; Hayashi, T.; Nishi, T.; J. Appl. Phys., 1986, 59, 3627
80. Keith, H. D.; Padden F. J., Jr. Polymer, 1984, 25, 28
81. Wang, Z. B.; Hu, Z. J.; Chen, Y. H.; Gong, Y. M.; Huang, H. Y.; He, T. B. Macromolecules 2007, 40, 4381
82. A. Frömsdorf, E. M. Woo, L. T. Lee, Y. F. Chen, S. Förster, Macromol. Rapid Commun. 2008, 29, 1322
83. A. Frömsdorf, K. C. Yen, S. H. Li, S. Förster, E. M. Woo, Ind. Eng. Chem. Res. 2009 submitted.
84. Hobbs, J. K.; McMaster, T. J.; Miles, M. J.; Barham, P. J.;Polymer., 1998, 39, 2437
85. Chiu, H. J.; Chen, H. L.; Lin, T. L.;and Lin, J. S., Macromolecules 1999, 32, 4969
86. Yuxizn, A.; Lisong, D.; Peixiang X.; Yugang, Z.; Zhishen, M.; and Zhiliu, F., Eur. Polym. J, 1997, 33, 1449
87. Chiu H. J. Polymer, 2005, 46, 3906
88. Hwang, S. H.; Jung, J. C.; Lee, S. W.; Eur. Polym. J. 1998, 34, 949
89. Hill, D. JT.; Markotsis, M.; Whittaker, A. K.; Wong, K. W.; Polym Int, 2003, 52, 1780
90. Chen, Y. F.; Woo, E. M., Macromol. Rapid Commun. 2009, 30, 1911
91. Rameau, A.; Gallot, Y.; Farnoux, P. M. B. Polymer 1989, 30,386,
92. Stoelting, J.; Karasz, F. E.; MacKnight, W. J. Polym. Eng. Sci. 1970, 10, 133.
93. Flory, P. J. J. Am.Chem. Soc. 1965, 86, 1833.
94. Flory, P. J. Discuss Faraday Soc. 1970, 49, 7
95. Sperling, L. H. “Introduction to Physical Polymer Science 2nd ed.”, John Wiley & Sons, Inc., New York, 1992
96. Hudson, S. D.; Davies, D. D.; Lovinger, A. J. Macromolecules 1992, 25, 1759.
97. Keith, H. D.; Padden, F. J., Jr. J. Appl. Phys. 1964, 35, 1286
98. Keith, H. D.; Padden, F. J., Jr. J. Appl. Phys. 1963, 34, 2409.
99. Di Lorenzo, M. L. Prog. Polym. Sci., 2003,28,663
100. Minakov,A.A.;Mordvintsev,D.A.;Schick,C.Polymer 2004,45,3755
101. Papageorgiou,G. Z.; Bikiaris, D. N. Polymer 2005, 46, 12081
102. Yuping, X.; Isao, N.; Yvonne, A. A. J. Appl. Polym. Sci 2008, 109, 2259
103. Di Lorenzo, M. L. Prog.Polym.Sci.,2003,28,663
104. Alfonso, G. C.; Russel, T. P. Macromolecules, 1986,19,1143
105. Martuscelli, E.; Silvestre, C.; Gismondi, C. Makromol. Chem.,1985,186,2161
106. Hong, P. D.; Chung, W. T.; Hsu, C. F, Polymer 2002, 43, 335
107. P. H.Lindenmeyer and V. F. Holland, Journal of Applied of Physics,1965,35,55
108. Ye, H. M.; Xu, J.; Guo, B. H.; Iwata, T, Macromolecules 2009, 42, 69
109. Penning Jp, Manley RStJ. Macromolecules, 1996, 29, 84
110. Strobl G. The physics of polymers: concepts for understanding their structures and behavior. 3rd ed. New York: Springer; 2007
111. Campbell D, White IR. Polymer characterization: physical techniques. Chapman & Hall; 1989
112. Van Krevelen DW. Properties of polymers. 3rd ed. Amsterdam: Elsevier; 1990
113. Woo E. M.; Mandal T. K.; Chang L. L., Macromolecles, 2000, 33, 4186
114. Fowler M. E.; Barlow J. W.; Paul D. R., Polymer, 1987, 28, 1177
115. Cowie J. M. G..; Lath D., Polymer Communication., 1987, 28, 300
116. Gazzano, M.; Focatete, M. L.; Riekel, C.; Ripamonti, A.; Scandola, M.;Macromol. Chem. Phys. 2001, 202, 1405
117. Xu, J.; Guo, B. H.; Zhang, Z. M.; Zhou, J. J.; Jiang, Y.; Yan, S.; Li, L.; Wu, Q.; Chen, G. Q.; Schultz, J. M. Macromolecules, 2004, 37, 4118