簡易檢索 / 詳目顯示

研究生: 周映暶
Chou, Ying-Hsuan
論文名稱: 生物可分解(聚羥基丁酸酯共聚羥基戊酸酯)與不定型態聚醋酸乙烯作用下之環狀消光環球晶內之晶板組裝
Lamellar Assembly in Ring-Banded Spherulitic Morphology of Biodegradable Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)Interacting with Amorphous Poly(vinyl acetate)
指導教授: 吳逸謨
Woo, Eamor
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 86
中文關鍵詞: 晶板消光環球晶
外文關鍵詞: lamellar, ring band
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用微分掃描式熱卡計(DSC)、偏光顯微鏡(POM)、掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)以及小角度X-光散射儀(SAXS)來探討聚羥基丁酸酯共聚羥基戊酸酯(poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV)和聚醋酸乙烯(poly(vinyl acetate), PVAc)此兩成分摻合系統的相容性、結晶動力、球晶型態以及晶板的構造。由PHBV/PVAc於各組成皆存在單一玻璃轉移溫度,以及均相相型態,可知PHBV與PVAc為相容系統,且PHBV/PVAc系統之作用力參數為-0.32。然而,在球晶成長速率方面,相較於neat PHBV,加入PVAc以後的混摻系統其球晶成長速率會受到抑制,PHBV的球晶成長速率隨著PVAc組成增加而下降,且產生最大球晶成長速率的溫度隨PVAc組成增加往高溫移動。Neat PHBV於Tc=60~110℃時會產生具有環狀消光環的球晶(ring-banded spherulites),然而隨著PVAc組成含量的增加,球晶消光環的規則度提高,且inter-ring spacing 會有下降的趨勢。此外,將試樣製備成塊材,觀察內部型態,可發現不論在內部抑或表面,都可產生具有消光環的球晶。更進一步的將試樣經過蝕刻的處理之後,在OM下觀察可發現,原本亮帶的部分會轉變為暗帶。而由AFM結果可知,消光環的ridge及valley處,主要分別由edge-on及flat-on的晶板構成。另外,使用不同Tmax處理試樣,在偏光顯微鏡下發現Tmax較高時,球晶成核密度會降低,球晶尺寸會變大。然而,經蝕刻之後的試樣,可發現在Tmax為190℃和220℃皆會發現在環狀帶中間都會有相反方向生長的晶板。從SAXS可以更進一步得知,PHBV和PVAc之間的排列,當Tmax較低時,晶板較厚且不定型成分(PVAc)較易進入PHBV結晶的interlamellar的區域。

    Polarized-light optical microscopy (POM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS) techniques were used to probe the phase behavior and crystalline morphology in blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with poly(vinyl acetate) (PVAc). DSC thermal analysis and OM characterization proved that PHBV was miscible with PVAc. A small negative value of the interaction parameters (χ12= -0.32 for PHBV/PVAc blend) was obtained with the melting-point depression method. By compared with the growth rate of neat PHBV at crystallization temperature 60~100oC, those of PHBV in blends decrease with increasing PVAc contents. In addition, the growth rates of PHBV in blends of all compositions show a maximum value with respect to crystallization temperature (Tc), while Tc at which the maximum growth rate occurs is dependent on blend composition. Neat PHBV shows ring-banded spherulites at Tc = 60~110oC. However, the ring-banded patterns of PHBV in PHBV/PVAc blends crystallized at the same Tc become regular and the inter-ring spacing decreases with increasing PVAc contents. In addition, ringed textures of PHBV spherulites in blends are also observed in the fracture surface of bulk form samples. The AFM characterizations on the ring-banded spherulite of blend show that the ridge and valley regions of ring bands consist of edge-on and flat-on lamellae, respectively. A solvent-etching method was used to investigate the ring-banded spherulites of PHBV. The ridge bands of PHBV spherulites in un-etched and solvent-etched samples correspond to the bright and dark bands, respectively, under optical microscopy (OM) observation. The maximum melting temperature (Tmax) affects the morphology of the ring-banded spherulites. The spherulites of PHBV and PHBV/PVAc blends become larger after melting at higher Tmax, indicative of a decrease in nucleation density. Upon melting at a lower Tmax, the thickness of crystalline phase is thicker and PVAc is more easily located in interlamellar region compared to those melted at a higher Tmax.

    中文摘要 I ABSTRACT II 致謝 IV 總目錄 V 圖目錄 VI 表目錄 X 第一章 簡介 1 第二章 原理 7 2-1 高分子相容性 7 2-2玻璃相轉移行為 9 2-3平衡熔點下降 10 2-4 Keith-Padden Theory of Spherulitic Crystallization 12 2-5球晶成長理論 15 第三章 實驗 18 3-1實驗所用之高分子及試藥 18 3-2實驗試樣之製備 18 3-3實驗所用之儀器 19 第四章 結果與討論 21 4-1 摻合系統之相容性探討 21 4-2 摻合系統之結晶動力分析 30 4-3 球晶型態觀察 34 4-4 摻合系統球晶晶板的探討 46 4-5 PHBV/PVAC三維空間環狀帶的觀察 70 第五章 結論 77 參考文獻 79

    1. Huang, Y. Y.; Chen, H. L.; Hashimoto, T. Macromolecules 2003, 36, 764.
    2. Zhang, X. H.; Wang, Z. G.; Muthukumar M.; Han, C. C. Macromol. Rapid Commun 2005, 26, 1285.
    3. Andrienko, D.; Leon, S.; Delle Site, L.; Kremer, K. Macromolecules 2005, 38, 5810,
    4. Zhou, N.; Lodge, T. P.; Bates, F. S. J. Phys. Chem. B 2006, 110, 3979.
    5. Ho, R. M.; Chang, C. C.; Chung, Y. W.; Chiang, Y. W.; Wu, J. Y. Polymer 2003, 44, 1459.
    6. Hsu, J. Y.; Nandan, B.; Chen, M. C.; Chiu, F. C.; Chen, H. L. Polymer 2005, 46, 11837,.
    7. He, A. H.; Han, C. C.; Yang, G. S. Polymer 2004, 24, 8231.
    8. Kim, Y. J.; Uyama, H.; Kobayashi, S. Macromolecules 2003, 36, 5058.
    9. Van Casteren, I. A.; Van Trier, R. A. M.; Goossens, J. G. P.; Meijer, H. E. H.; Lemstra, P. J. J. Polym. Sci. Part B Polym. Phy. 2004, 42, 2137.
    10. Anantawaraskul, S.; Soares, J. B. P.; Wood-Adamx, P. M. Macromol. Chem. Phys. 2004, 205, 771.
    11. Bank, M.; Leffingwell, J.; Thies, C. Macromolecules 1971, 6, 43.
    12. Nishimoto, M.; Keskkula, H.; Paul, D. R. Polymer 1971, 32, 272.
    13. Walsh, D. J.; Higgins, J. S.; Maconndchie, A. “Polymer Blends and Mixtures”, Mijhoff Publishers, Boston, 1985.
    14. Landry, C. J. T.; Yang, H.; Machell, J. S. Polymer 1991, 32, 44.
    15. Coleman, M. M.; Moskala, E. J. Polymer 1983, 24, 251.
    16. Varnell, D. F.; Moskalk, E. J.; Painter, P. C.; Coleman, M. M. Polym. Eng. Sci. Phy. Ed., 23, 658, 1983.
    17. Eisengerg, A.; Hara, M. Polym. Eng. Sci. 1984, 24, 1306.
    18. Aubin, M.; Bedard, Y.; Morrissette, M. F.; Prudhomme, R. E. J. Polym.Sci. Phys. Ed., 21, 233, 1983.
    19. Rodriguez-Parada, J. M.; Percec, V. Macromolecules 1986, 19, 55.
    20. Lu, J. M.; Qiu, Z. B.; Yang, W. T. Polymer 2007, 48, 4196.
    21. Tokiwa Y.; Suzuki T.; J. Appl. Polm. Sci. 1981, 26, 441.
    22. Hu, Y.; Zhang, JM.; Sato, H.; Futami, Y.; Noda, I; Ozaki, Y. Macromolecules 2006, 39, 3841.
    23. Iriondo, P.; Iruin, J. J.; Fernandez-Berridi, M. J. Macromolecules 1996, 29, 5605.
    24. Iriondo, P.; Iruin, J. J.; Fernandez-Berridi, M. J. Polymer 1995, 36, 3235.
    25. Xing, P.; Ai, X.; Dong, L.; Feng, Z. Macromolecules 1998, 31, 6898.
    26. Yang, H.; Ze_Sheng, L.; Qian, H. H.; Yang, Y. B.; Zhang, X. B.; Sun, C. C. Polymer 2004, 45, 453.
    27. Na, Y. H.; Asakawa, N.; Yashie, N.; Inoue, Y. Macromolecules 2002, 35, 727
    28. N. Lotti, M. Pizzoli, G. Ceccorulli, M. Scandola, Polymer 1993, 34, 4935.
    29. Chen, C.; Yu, P. H. F.; Cheung, M. K. J. Appl. Polym. Sci, 2005, 98, 736
    30. Doi, Y.; Kitamura, S.; Abe, H. Macromolesules 1995, 28, 4822
    31. Watanabe, T.; He, Y.; Fukuchi, T.; Inoue, Y. Macromol. Biosci 2001, 1, 75
    32. Asrar, J.; Valentin, H. E.; Berger, P. A.; Tran, M.; Padgette, S. R.; Garbow, J. R. Biomacromolecules 2002, 3,1006
    33. Qiu, Y. Z.; Ouyang, S. P.; Shen, Z.; Wu, Q.; Chen, G. Q. Macromol. Biosci. 2004, 4, 255
    34. Ouyang, S. P.; Liu, Q.; Fang, L.; Chen, G. Q. Macromol. Biosci. 2007, 7, 227
    35. Doi Y. Microbiology polyester. New York: VCH Publishers Inc.; 1990
    36. Mitomo, H,; Barham, P.J.; Keller, A. Polymer J. 1987, 19, 1241
    37. Holmes, P.A.; In:Bassett DC, editor. Developments is crystalline polymers-2. Amsterdam: Elsevier; 1988.
    38. Holmes PA.”Developments in Crystalline polymers-2” (Ed Bassett DC), Elsevier, Amsterdam, 1988.
    39. Bluhm, T. L.; Hamer, G.. K.; Marchessault, R.H.; Fyfe, C.A.; Veregin, R.P. Macromolecules 1986,19, 2871
    40. Kunioka, M.; Tamaki, A.; Doi, Y. Macromolecules 1989, 22, 694.
    41. Scandola, M.; Ceccorulli, G.; Pizzoli, M.; Gazzano, M. Macromolecules 1992, 25, 1405.
    42. Yamada, S.; Wang, L.; Asakawa, N.; Yoshie, N.; Inoue, Y. Macromolecules 2001, 34, 4659.
    43. Gunaratne, L. M. W. K.; Shanks, R. A. Eur. Polym, J. 2005, 41, 2980.
    44. Yoshie, N.; Saoito, M.; Inoue, Y. Macromolecules 2001, 34, 8953
    45. Barker, P. A.; Barham, P. J, Polyme 1997, 38, 913
    46. Sawayanagi, T.; Tanaka, T.; Iwate, T.; Abe, H.; Doi, Y.; Ito, K.; Fujisawa, T.; Fujita, M, Macromolecules 2007, 40, 2392
    47. Wang, Z.; Li, Y.; Yang, J.; Gou, Q.; Wu, Y.; Wu, X.; Liu, P.; Gu.Q, Macromoleculaes 2010, 43, 4441
    48. Zheng, L. L.; Goh, S. H.; Lee, S. Y.; Hee, G. R. Polymer 2000, 41, 1429.
    49. Russell, T. P.; Ito, H.; Wignall, G. D. Macromolecules 1988, 21, 1703
    50. Warner, F. P.; Stein, R. S.; MacKnight, W. J. J. Polym. Sci, Polym Phy. Ed. 1977, 15, 2113
    51. Keith, H. D.; Padden, F. J. Jr. J. Appl. Phys., 1964, 35, 1270
    52. Woo, E. M.; Wu, P. L. Colloid Polym. Sci. 2006, 284, 357
    53. Huang, Y. P.; Kuo, J. F.; Woo, E. M. Polym. Int, 2001, 51, 55
    54. Hashida, T.; Jeong, Y. G.; Hua, Y.; Hsu, S. L.; Paul, C. W. Macromolecules 2005, 38, 2876
    55. Woo, E. M.; Chang, C. S.; Wu, M. C. Materials Letters, 2007, 61, 3542
    56. Chiu S. C.; Smith T. G., Journal of Applied Polymer Science, 1984, 29, 1797
    57. Miao, L.; Qiu, Z.; Yang, W.; Ikehara, T.; Reactive & Functional Polymers ,2008, 68, 446
    58. Chun,Y.S.; Kim, W.N., Polymer, 2000, 41, 2305
    59. Qiu, Z.; Ikehara, T.; Nishi, T., Polymer, 2003, 44, 7519.
    60. Ferreira, B. M. P.; Zavaglia, C. A. C.; Duek, E. A. R.;Journal of Applied Polymer Science,. 2002, 86, 2898
    61. Qiu, Z.; Fujinami, S.; Komura, M.; Nakajima, K.; Ikehara, T.; Nishi, T.,Polymer 2004, 45, 4355.
    62. Tan, S. M .; Ismail, J.; Kummerlowe, C.; Kammer, H. W., Journal of Applied Polymer Science, 2006, 101, 2776
    63. Serrano, B.; Pierola, I. F.; Bravo, J.; Baselga, J.; J. Master. Process. Tech., 2003, 141, 123
    64. Guo, Q.; Liu, Z.; J. Term. Anal. Calorim., 2000, 59, 101
    65. Gajria, A. M.; Dave, V.; Gross, R. A., McCarthy, S. P., Polymer, 1996, 37, 437
    66. Kalfoglu, N. K., J. Polym. Sci.: Polym. Phys. Ed., 1982, 20, 1259.
    67. Morra, B.; Stein, R. S., J. Polym. Sci. B, 1982, 20, 2261
    68. Nojima S.; Watanabe K.; Zheng Z.; Ashida T. Polym. J., 1988, 20, 823.
    69. Keith, H. D.; Padden, F. J., Jr.; Russell, T. P. Macromolecules 1989, 22, 666.
    70. Wang, Z.; Jiang, B. Z. Macromolecules 1997, 30, 6223
    71. Wang, Z.; Wang, X.; Yu D.; Jiang. B. Z., Polymer 1997, 38, 5897
    72. Wang, Z.; Wang, X.; An L.; Jiang, W.; Jiang, B.; Wang, X. J Polym. Sci Part B: Polym. Phys. 1999, 37, 2682.
    73. Li, W.; Yan, R.; Jiang, X.; Jiang, B. Macromol. Sci. Phys. 1992, B31, 227.
    74. Wang, Z.; An, L.; Jiang, B.; Wang, X. Macromol. Rapid Commun., 1998, 19, 131.
    75. Keller, A. J. Polym. Sci. 1955, 17, 291
    76. Keller, A. J. Polym. Sci. 1955, 39, 151
    77. Keith, H. D.; Padden F. J., Jr. Macromolecules 1996, 29, 7776
    78. Keith, H. D. Polymer 2001, 42, 9987
    79. Tanaka, H.; Hayashi, T.; Nishi, T.; J. Appl. Phys., 1986, 59, 3627
    80. Keith, H. D.; Padden F. J., Jr. Polymer, 1984, 25, 28
    81. Wang, Z. B.; Hu, Z. J.; Chen, Y. H.; Gong, Y. M.; Huang, H. Y.; He, T. B. Macromolecules 2007, 40, 4381
    82. A. Frömsdorf, E. M. Woo, L. T. Lee, Y. F. Chen, S. Förster, Macromol. Rapid Commun. 2008, 29, 1322
    83. A. Frömsdorf, K. C. Yen, S. H. Li, S. Förster, E. M. Woo, Ind. Eng. Chem. Res. 2009 submitted.
    84. Hobbs, J. K.; McMaster, T. J.; Miles, M. J.; Barham, P. J.;Polymer., 1998, 39, 2437
    85. Chiu, H. J.; Chen, H. L.; Lin, T. L.;and Lin, J. S., Macromolecules 1999, 32, 4969
    86. Yuxizn, A.; Lisong, D.; Peixiang X.; Yugang, Z.; Zhishen, M.; and Zhiliu, F., Eur. Polym. J, 1997, 33, 1449
    87. Chiu H. J. Polymer, 2005, 46, 3906
    88. Hwang, S. H.; Jung, J. C.; Lee, S. W.; Eur. Polym. J. 1998, 34, 949
    89. Hill, D. JT.; Markotsis, M.; Whittaker, A. K.; Wong, K. W.; Polym Int, 2003, 52, 1780
    90. Chen, Y. F.; Woo, E. M., Macromol. Rapid Commun. 2009, 30, 1911
    91. Rameau, A.; Gallot, Y.; Farnoux, P. M. B. Polymer 1989, 30,386,
    92. Stoelting, J.; Karasz, F. E.; MacKnight, W. J. Polym. Eng. Sci. 1970, 10, 133.
    93. Flory, P. J. J. Am.Chem. Soc. 1965, 86, 1833.
    94. Flory, P. J. Discuss Faraday Soc. 1970, 49, 7
    95. Sperling, L. H. “Introduction to Physical Polymer Science 2nd ed.”, John Wiley & Sons, Inc., New York, 1992
    96. Hudson, S. D.; Davies, D. D.; Lovinger, A. J. Macromolecules 1992, 25, 1759.
    97. Keith, H. D.; Padden, F. J., Jr. J. Appl. Phys. 1964, 35, 1286
    98. Keith, H. D.; Padden, F. J., Jr. J. Appl. Phys. 1963, 34, 2409.
    99. Di Lorenzo, M. L. Prog. Polym. Sci., 2003,28,663
    100. Minakov,A.A.;Mordvintsev,D.A.;Schick,C.Polymer 2004,45,3755
    101. Papageorgiou,G. Z.; Bikiaris, D. N. Polymer 2005, 46, 12081
    102. Yuping, X.; Isao, N.; Yvonne, A. A. J. Appl. Polym. Sci 2008, 109, 2259
    103. Di Lorenzo, M. L. Prog.Polym.Sci.,2003,28,663
    104. Alfonso, G. C.; Russel, T. P. Macromolecules, 1986,19,1143
    105. Martuscelli, E.; Silvestre, C.; Gismondi, C. Makromol. Chem.,1985,186,2161
    106. Hong, P. D.; Chung, W. T.; Hsu, C. F, Polymer 2002, 43, 335
    107. P. H.Lindenmeyer and V. F. Holland, Journal of Applied of Physics,1965,35,55
    108. Ye, H. M.; Xu, J.; Guo, B. H.; Iwata, T, Macromolecules 2009, 42, 69
    109. Penning Jp, Manley RStJ. Macromolecules, 1996, 29, 84
    110. Strobl G. The physics of polymers: concepts for understanding their structures and behavior. 3rd ed. New York: Springer; 2007
    111. Campbell D, White IR. Polymer characterization: physical techniques. Chapman & Hall; 1989
    112. Van Krevelen DW. Properties of polymers. 3rd ed. Amsterdam: Elsevier; 1990
    113. Woo E. M.; Mandal T. K.; Chang L. L., Macromolecles, 2000, 33, 4186
    114. Fowler M. E.; Barlow J. W.; Paul D. R., Polymer, 1987, 28, 1177
    115. Cowie J. M. G..; Lath D., Polymer Communication., 1987, 28, 300
    116. Gazzano, M.; Focatete, M. L.; Riekel, C.; Ripamonti, A.; Scandola, M.;Macromol. Chem. Phys. 2001, 202, 1405
    117. Xu, J.; Guo, B. H.; Zhang, Z. M.; Zhou, J. J.; Jiang, Y.; Yan, S.; Li, L.; Wu, Q.; Chen, G. Q.; Schultz, J. M. Macromolecules, 2004, 37, 4118

    下載圖示 校內:2013-07-19公開
    校外:2013-07-19公開
    QR CODE