| 研究生: |
陳俊銘 Chen, Chun-Ming |
|---|---|
| 論文名稱: |
噴覆成型高矽量Al-Si-Zn-Fe-Mg合金的塑性加工性及高溫機械性質探討 Study of the Workability and Elevated Temperature Mechanical Properties of High Si-Containing Al-Si-Zn-Fe-Mg Alloys Synthesized by Spray Forming Process |
| 指導教授: |
曹紀元
Tsao, Chi-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 噴覆成型 、高矽量鋁矽合金 、間接擠型 、機械性質 |
| 外文關鍵詞: | Spray formed, Al-Si alloys, Indirect extrusion, Mechanical properties |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般鋁合金在磨耗性質、熱機性質上較不具優勢,本研究藉由添加矽元素進行改善,添加矽含量至25wt.%及30wt.%,利用噴覆成型製程製備高矽量Al-25Si-2.5Fe-10Zn-1Mg及Al-30Si-2.5Fe-10Zn-1Mg合金,其顯微組織具細小且均勻分布的Si顆粒及第二相,改善一般鋁合金及高矽鋁合金的機械性質。
藉由高溫壓縮試驗探討噴覆成型之Al-25Si-2.5Fe-10Zn-1Mg及Al-30Si-2.5Fe-10Zn-1Mg合金的熱變形行為,研究變形溫度、應變速率及矽含量對材料塑性變形行為之影響,並計算材料Zenner-Hollomon常數了解材料在塑性變形時流變應力、顯微組織與變形溫度、應變速率的關係。
利用間接擠型製程探討噴覆成型之Al-25Si-2.5Fe-10Zn-1Mg及Al-30Si- 2.5Fe-10Zn-1Mg合金的加工性,分析擠型棒材的顯微組織了解擠型溫度、平均應變速率的影響,並於室溫25℃及高溫250℃下進行擠型棒材的拉伸試驗,探討間接擠型參數對材料室溫、高溫機械性質之影響。
General aluminum alloys have no superiority over the wear properties and thermos- mechanical properties. By adding Si element could improve those properties. In this study, we increased the Si content to 25wt.% and 30wt.% in aluminum alloys. Spray forming process was employed to produce the high Si-containing Al-25Si-2.5Fe-10Zn-1Mg and Al-30Si-2.5Fe-10Zn-1Mg alloys, which have uniform distribution of fine Si particles and secondary phases in matrix. It showed improved mechanical properties compared to Al and Al-Si alloys.
Compression test at elevated temperature was employed to research the hot deformation behavior. The author studied the effects of temperature, strain rate and Si content upon the behavior of plastic deformation of material. Furthermore, we calculated the Zenner- Hollomon parameter to study the relation of flow stress and microstructure between the temperature and strain rate.
The indirect extrusion process was employed to research the workability of Al-25Si-2.5Fe- 10Zn-1Mg and Al-30Si- 2.5Fe-10Zn-1Mg alloys. Furthermore, we observed to the microstructure of extrude rods to know the effects of temperature, mean strain rate and Si content. And we studied the effect of extrusion parameters on the tensile properties at room and elevated temperature.
1. Wang, F., et al., A comparison of the sliding wear behavior of a hypereutectic Al-Si alloy prepared by spray-deposition and conventional casting methods. Wear, 2004. 256(3-4): p. 342-345.
2. Javidani, M. and D. Larouche, Application of cast Al-Si alloys in internal combustion engine components. International Materials Reviews, 2014. 59(3): p. 132-158.
3. Srivastava, V.C., et al., Microstructure and wear characteristics a hypereutectic Al-Si alloy produced by spray deposition. Transactions of the Indian Institute of Metals, 1999. 52(1): p. 29-40.
4. Komiyama, Y., K. Uchida, and M. Tokui, Hyper-eutectic aluminum-silicon based alloys for castings. 1977, Google Patents.
5. Ruckert, F., P. Stocker, and R. Rieger, Cylinder liner of a hypereutectic aluminum/silicon alloy for casting into a crankcase of a reciprocating piston engine and process for producing such a cylinder liner. 1999, Google Patents.
6. Raju, K., S.N. Ojha, and A.P. Harsha, Spray forming of aluminum alloys and its composites: an overview. Journal of Materials Science, 2008. 43(8): p. 2509-2521.
7. Hatch, J.E., A. Association, and A.S. Metals, Aluminum: Properties and Physical Metallurgy. 1984: American Society for Metals.
8. Hu, H., et al., On the evolution of porosity in spray-deposited tool steels. Metallurgical and Materials Transactions A, 2000. 31(3): p. 725-735.
9. Kim, W.-J., J.H. Yeon, and J.C. Lee, Superplastic deformation behavior of spray-deposited hyper-eutectic Al–25Si alloy. Journal of Alloys and Compounds, 2000. 308(1–2): p. 237-243.
10. Srivastav, V.C., et al., Wear Characteristics of spray formed aluminium alloys and their composites. Journal of Material Science, 2009. 44: p. 2288-2299.
11. Elmadagli, M., T. Perry, and A.T. Alpas, A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear, 2007. 262(1–2): p. 79-92.
12. Ha, T.K., et al., Fabrication of spray-formed hypereutectic Al–25Si alloy and its deformation behavior. Journal of Materials Processing Technology, 2002. 130–131: p. 691-695.
13. Goudar., D.M., et al., Spray Deposition Process of Hypereutectic Al-Si alloys: An overview. International Journal of Scientific and Engineering Research, 2011. 2(6).
14. Bunk, W.G.J., Aluminium RS metallurgy. Materials Science and Engineering: A, 1991. 134: p. 1087-1097.
15. Boettinger, W.J., L. Bendersky, and J.G. Early, An analysis of the microstructure of rapidly solidified Al-8 wt pct Fe powder. Metallurgical Transactions A, 1986. 17(5): p. 781-790.
16. Cochrane, R.F., P.V. Evans, and A.L. Greer, Competitive growth analysis of phase formation in Al-8wt.%Fe. Materials Science and Engineering: A, 1991. 133: p. 803-806.
17. Cotton, J.D. and M.J. Kaufman, Microstructural evolution in rapidly solidified Al-Fe alloys: An alternative explanation. Metallurgical Transactions A, 1991. 22(4): p. 927-934.
18. Wang, F., et al., Effect of Fe and Mn additions on microstructure and wear properties of spray-deposited Al-20Si alloy. Materials Letters, 2004. 58(19): p. 2442-2446.
19. Srivastava, V.C., R.K. Mandal, and S.N. Ojha, Microstructure and mechanical properties of Al–Si alloys produced by spray forming process. Materials Science and Engineering: A, 2001. 304–306: p. 555-558.
20. Wu, Y., W.A. Cassada, and E.J. Lavernia, Microstructure and mechanical properties of spray-deposited Al-17Si-4.5Cu-0.6Mg wrought alloy. Metallurgical and Materials Transactions A, 1995. 26(5): p. 1235-1247.
21. Chiang, C.H. and C.Y.A. Tsao, Si coarsening of spray-formed high loading hypereutectic Al–Si alloys in the semisolid state. Materials Science and Engineering: A, 2005. 396(1–2): p. 263-270.
22. Zhou, J., J. Duszczyk, and B.M. Korevaar, Structural development during the extrusion of rapidly solidified Al-20Si-5Fe-3Cu-1Mg alloy. Journal of Materials Science, 1991. 26(3): p. 824-834.
23. Thursfield, G. and M.J. Stowell, Mechanical properties of Al-8 wt% Fe-based alloys prepared by rapid quenching from the liquid state. Journal of Materials Science, 1974. 9(10): p. 1644-1660.
24. Jones, H., Observations on a structural transition in aluminium alloys hardened by rapid solidification. Materials Science and Engineering, 1969. 5(1): p. 1-18.
25. Wang, F., et al., Effect of Fe and Mn additions on microstructure and wear properties of spray-deposited Al–20Si alloy. Materials Letters, 2004. 58(19): p. 2442-2446.
26. Srivastava, A.K., et al., Microstructural features induced by spray processing and hot extrusion of an Al–18% Si–5% Fe–1.5% Cu alloy. Acta Materialia, 2006. 54(7): p. 1741-1748.
27. Hou, L.G., et al., Effect of (Mn plus Cr) addition on the microstructure and thermal stability of spray-formed hypereutectic Al-Si alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009. 527(1-2): p. 85-92.
28. Cai, Y.H., et al., Effect of Cr and Mn on the microstructure of spray-formed Al-25Si-5Fe-3Cu alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2011. 528(12): p. 4248-4254.
29. Wang, F., et al., The microstructure and mechanical properties of spray-deposited hypereutectic Al–Si–Fe alloy. Journal of Materials Processing Technology, 2003. 137(1–3): p. 191-194.
30. Li, Z., et al., Effect of alloying elements on the segregation and dissolution of CuAl2 phase in Al-Si-Cu 319 alloys. Journal of Materials Science, 2003. 38(6): p. 1203-1218.
31. Gomes, R.M., et al., Precipitation Behavior of P/M Hypereutectic Al–Si–Cu–Mg Alloys Containing Fe and Ni. Materials Transactions, JIM, 1998. 39(3): p. 357-364.
32. Wei, Y.-g., et al., Property measurements on spray formed Si-Al alloys. Transactions of Nonferrous Metals Society of China, 2007. 17(2): p. 368-372.
33. Chiang, C.H. and C.Y.A. Tsao, Microstructures and mechanical properties of spray-formed and squeeze-cast Al–25Si–0.89Cu–1.0Ni–0.84Mg alloys in solutionized and aged conditions. Materials Science and Engineering: A, 2006. 417(1-2): p. 90-98.
34. Jeyakumar, M., S. Kumar, and G.S. Gupta, The influence of processing parameters on characteristics of an aluminium alloy spray deposition. Materials and Manufacturing processes 2009. 24: p. 693-699.
35. Srivastava, V.C., et al., Microstructural modifications induced during spray deposition of Al–Si–Fe alloys and their mechanical properties. Materials Science and Engineering: A, 2007. 471(1–2): p. 38-49.
36. Bereta, L.A., et al., Microstructure and mechanical properties of spray deposited and extruded/heat treated hypoeutectic Al–Si alloy. Materials Science and Engineering: A, 2007. 449–451: p. 850-853.
37. Nieh, T.G., J. Wadsworth, and O.D. Sherby, Superplasticity in Metals and Ceramics. 1997: Cambridge University Press.
38. Zhou, J., et al., CHARACTERIZATION OF THE HOT-WORKING BEHAVIOR OF A P/M AL-20SI-7.5NI-3CU-1MG ALLOY BY HOT TORSION. Journal of Materials Science, 1992. 27(15): p. 4247-4260.
39. McQueen, H.J., et al., Hot Deformation and Processing of Aluminum Alloys. 2016: CRC Press.
40. Bauser, M. and K. Siegert, Extrusion: Second Edition. 2006: ASM International.
41. Cerri, E., et al., Comparative hot workability of 7012 and 7075 alloys after different pretreatments. Materials Science and Engineering: A, 1995. 197(2): p. 181-198.
42. Sheppard, T. and R.P. Vierod, EFFECT OF PREHEAT MODIFICATION ON EXTRUSION CHARACTERISTICS OF ALUMINUM-ALLOY 2014. Materials Science and Technology, 1985. 1(4): p. 321-324.
43. Peng, Z. and T. Sheppard, Study of surface cracking during extrusion of aluminium alloy AA 2014. Materials Science and Technology, 2004. 20(9): p. 1179-1191.
44. 蘇彥豪, 汽車引擎用噴覆成型高矽鋁合金汽缸套開發. 2004.
45. Malakhov, D.V., D. Panahi, and M. Gallerneault, On the formation of intermetallics in rapidly solidifying Al–Fe–Si alloys. Calphad, 2010. 34(2): p. 159-166.
46. Jia, Y.-d., et al., Microstructure Evolution and Mechanical Properties of Spray-deposited Al-21. 47Si-4. 73Fe-2. 5Cu-0. 9Mg Alloy. Journal of Iron and Steel Research, International, 2016. 23(1): p. 14-18.
47. Elsharkawi, E.A., et al., Effects of Mg, Fe, Be additions and solution heat treatment on the π-AlMgFeSi iron intermetallic phase in Al–7Si–Mg alloys. Journal of Materials Science, 2010. 45(6): p. 1528-1539.
48. Fukahori, R., et al., Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials. Applied Energy, 2016. 163: p. 1-8.
49. Hou, L.G., C. Cui, and J.S. Zhang, Optimizing microstructures of hypereutectic Al–Si alloys with high Fe content via spray forming technique. Materials Science and Engineering: A, 2010. 527(23): p. 6400-6412.
50. 蘇怡達, 噴覆成型製作之超高矽過共晶鋁矽合金的塑性加工性及其機械性質之探討. 2014.
51. Jia, Y.-d., et al., Hot deformation behavior of spray formed Al-22Si-5Fe-3Cu-1Mg alloy. Transactions of Nonferrous Metals Society of China, 2011. 21: p. s299-s303.
52. Mummery, P.M., B. Derby, and C.B. Scruby, ACOUSTIC-EMISSION FROM PARTICULATE-REINFORCED METAL-MATRIX COMPOSITES. Acta Metallurgica Et Materialia, 1993. 41(5): p. 1431-1445.