簡易檢索 / 詳目顯示

研究生: 傅宣貴
Fu, Hsuan-Kuei
論文名稱: 鋪面厚度與標稱最大粒徑對多孔隙瀝青混凝土成效之影響
Effect of Thickness and Nominal Maximum Aggregate Size on Performance of Porous Asphalt Concrete
指導教授: 陳建旭
Chen, Jann-Shiuh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系碩士在職專班
Department of Civil Engineering (on the job class)
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 82
中文關鍵詞: 多孔隙瀝青混凝土標稱最大粒徑傳統刨除細紋刨除
外文關鍵詞: Porous Asphalt Concrete, Nominal Maximum Aggregate Size, Conventional milling, Fine milling
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來國內各項道路工程大幅將多孔隙瀝青混凝土應用於快速
    道路及高速公路的面層,因此如何選擇適合不同路段之標稱最大粒
    徑、鋪築厚度及刨除方式值得去深入探討。本研究針對國道8號共6處路段進行現地鋪面檢測評估與實驗室試驗分析。針對三種不同標稱最大粒徑9.5mm、12.5mm及19mm,刨除方式為傳統刨除及細紋刨除,共有6種不同刨鋪型態以及鋪築厚度來進行鋪面績效檢測。PAC鋪面績效分別針對功能性(Functionality):透水量、噪音量,耐久性(Durability):平坦度、車轍量和Clegg衝擊值,安全性(Safety):鋪面摩擦值,以上三個部分來探討及解釋。研究結果顯示PAC初期透水量成效良好且PAC之標稱最大粒徑越大,透水功能越佳,PAC減噪效果優於OGFC,同時PAC對於行車間之抗車轍能力佳。PAC鋪築過程平整度如控制良好,則施工後行車舒適度提高,IRI
    值降低;PAC鋪面整體結構均呈現穩定狀態,對於溫度的敏感性明顯;PAC鋪面抗滑能力良好,提供雨天時之行車安全。

    In recent years, various domestic road projects will substantially porous asphalt concrete for rapid Surface roads and highways, so how to choose the different sections of the nominal maximum particle Diameter, thickness and eliminating paving the way worth to depth. The study for the National Route 8 of six sections of land are now surfacing detection and evaluation and experimental analysis laboratory. For three different nominal maximum particle size 9.5mm, 12.5mm and 19mm, eliminating the traditional way and eliminating wrinkles eliminating a total of 6 different patterns and paving thickness planer shop for pavement performance testing. PAC pavement performance separately for functionality (Functionality): permeable amount, the amount of noise, durability (Durability): flatness, volume and Clegg rutting impact value, safety (Safety): pavement friction values, these three parts to discuss and explanation. The results show the effectiveness of a good amount of PAC initial permeability of the PAC and the larger nominal maximum particle size, the better the permeability function, PAC noise better than OGFC, while PAC for rutting resistance line shop of the good. PAC paving process flatness control as well, driving comfort increase after the construction, IRI
    Value decreases; PAC pavement structure showed a stable state overall, obviously sensitive to temperature; good PAC pavement skid resistance, providing traffic safety at the rain.

    目 錄 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-3 1.4 研究範圍 1-4 第二章 文獻回顧 2-1 2.1 PAC材料特性 2-2 2.1.1 PAC與OGFC鋪面之比較 2-3 2.1.2 粒料 2-3 2.1.3 瀝青 2-4 2.1.4 穩定添加劑 2-6 2.1.5 填充料 2-6 2.2 國內PAC鋪面概況 2-7 2.3 噪音 2-7 2.4 刨除方式 2-10 2.5 PAC鋪面績效 2-13 2.5.1 耐久性 2-13 2.5.2 安全性 2-13 第三章 研究流程與方法 3-1 3.1 研究流程 3-1 3.2 PAC材料性質 3-3 3.2.1 級配 3-3 3.2.2 瀝青 3-5 3.2.3 粒料 3-6 3.2.4 填充料 3-8 3.2.5 PAC配比設計 3-9 3.3 試驗路段 3-12 3.3.1 柔性鋪面 3-12 3.4 現地試驗 3-16 3.4.1 功能性評估-透水量試驗 3-16 3.4.2功能性評估-噪音量試驗 3-16 3.4.3耐久性評估-車轍量試驗 3-17 3.4.4耐久性評估-平坦度試驗 3-18 3.4.5耐久性評估-Clegg衝擊試驗 3-18 3.4.6安全性評估-抗滑度試驗 3-19 第四章 研究結果與分析 4-1 4.1 功能性評估-透水量試驗結果 4-1 4.2 功能性評估-噪音量檢測結果 4-4 4.3 耐久性評估-車轍值試驗結果 4-7 4.4 耐久性評估-平坦度試驗結果 4-10 4.5 耐久性評估- Clegg衝擊值試驗結果 4-14 4.6 安全性評估-抗滑值試驗結果 4-17 第五章 結論及建議 5-1 5.1 結論 5-1 5.2 建議 5-2 參考文獻 參-1 口試委員提問與建議答覆表 附-1 圖目錄 圖2.4.1 一般與細紋滾筒示意圖 2-12 圖3.1.1 研究流程圖 3-2 圖3.2.1 PAC配合設計流程 3-11 圖3.3.1 國道8號PAC鋪面規劃示意圖 3-15 圖3.4.1 標線透水試驗情形 3-16 圖3.4.2 噪音量試驗 3-17 圖3.4.3 車轍量試驗 3-17 圖3.4.4 平坦度試驗 3-18 圖3.4.5 Clegg衝擊試驗 3-19 圖3.4.6 抗滑度試驗 3-19 圖4.1.1 透水量試驗(1) 4-1 圖4.1.2 透水量試驗(2) 4-2 圖4.1.3 施工前後透水性 4-3 圖4.1.4 標稱最大粒徑(NMAS)與透水量之關係 4-4 圖4.2.1 噪音量檢測(1) 4-5 圖4.2.2 噪音量檢測(2) 4-5 圖4.2.3 施工前後噪音量 4-6 圖4.2.4 PAC鋪面通車3個月後之減噪效果 4-7 圖4.3.1 車轍量檢測(1) 4-8 圖4.3.2 車轍量檢測(2) 4-8 圖4.3.3 施工前車轍量試驗 4-9 圖4.3.4 PAC鋪面施工前車轍量變化情形 4-10 圖4.4.1 平坦度試驗 4-11 圖4.4.2 施工前後平坦度 4-12 圖4.4.3 PAC鋪面輪跡處IRI值變化 4-13 圖4.4.4 PAC鋪面車道中心處IRI值變化 4-14 圖4.5.1 衝擊式試驗(1) 4-15 圖4.5.2 衝擊式試驗(2) 4-15 圖4.5.3 施工前CIV值 4-16 圖4.5.4 PAC鋪面CIV值變化情形 4-17 圖4.6.1 抗滑度試驗(1) 4-18 圖4.6.2 抗滑度試驗(2) 4-18 圖4.6.3 施工前BPN值 4-19 圖4.6.4 PAC鋪面BPN值變化情形 4-20 表目錄 表2.3.1 Colorado DOT不同HMA鋪面面層之噪音水準 2-8 表2.3.2 不同NMAS產生之噪音值 2-9 表3.2.1 多孔隙瀝青混凝土級配規格 3-4 表3.2.2 高黏度改質瀝青規範 3-5 表3.2.3 粗粒料性質規範 3-7 表3.2.4 細粒料性質規範 3-8 表3.2.5 礦物填充料級配 3-9 表3.2.6 多孔隙瀝青混凝土之品質規定 3-12 表3.3.1 PAC檢測點位 3-13

    1. 參考文獻

    中華鋪面工程學會 (2005),「排水性瀝青混凝土」,桃園。

    日本道路協會(1999) ,「排水性鋪裝技術指針(案)」,日本。

    房性中(2000),「排水性鋪面使用材料規格暨基本性能需求說明」現
    代營建,251期。

    施工綱要規範(2009)「第02798章多孔隙瀝青混凝土鋪面V1.0」,行
    政院公共工程委員會。

    Alvarez, A. E., A.Epps-Martin, C.K.Estakitiri, J.W.Button,C.J.Glover, and S.H.Jung. (2006). Synthesis of Current Practice on the Design, Construction, and Maintenance of Porous Friction Courses, FHWA/TX-06/0-5262-1, Texas Transoprtation Institute, College Station Texas.

    Alvarez, A.E., A.E. Martin and C. Estakhri (2011). “A Review of Mix Design and Evaluation Research for Permeable Friction Course Mixtures,” Construction and Building Materials, Vol.25, pp.108-113.

    Hassan, F. H., AI-Oraimi S., and Taha R. (2005). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer,” Journal of Materials in Civil Engineering, Vol. 17, pp. 416-422.

    Huber, G.(2000). Performance Survey on Open-Graded Friction Course Mixes. NCHRP Synthesis of Highway Practice 284:TRB,National Research Council, Washington, D.C.

    Keystonecutter Engineering (2013). http://www.keystonecutter.com, Browse October 1, 2013.

    Kandhal, P. S. (2002).“Design, Construction and Maintenance of Open-Graded Asphalt Friction Courses.”National Asphalt PavementAssociation Information Series 115.

    Lai, J., Sheila Hines, Peter Y. Wu, and David M. Jared. (2012). “Pavement Preservation with Micromilling in Georgia Follow-Up Study” Transportation Research Record: Journal of the Transportation Research Board, No. 2292, Transportation Research Board of the National Academies, Washington, D.C., pp. 81–87.

    Lefebvre, G. (1993). Porous Asphalt. Permanent Intrnational Association of Road Congresses.

    Mallick, R.B., P.S.Kandhal, L.A.Cooley, Jr., and D.E.Wsrson (2000). Design, Construction, and Performance of New Generarion Open-Graded Friction Courses. NCAT Report No.2000-01. Narional Center for Asphalt Technology, Auburn University.

    Mohammad, L. N., Negulescu, I. I., Wu, Z., Daranga, C., Daly, W. H., and Abadie, C. (2003) “Investigation of The Use of Recycled Polymer Modified Asphalt Binder in Asphalt Concrete Pavements,” Journal of the Association of Asphalt Paving Technologists, Vol.72, pp.551-594.

    Molenaar, J.M.M. and A.A.A. Molenaar. (2000). “An Investigation into the Contribution of the Bituminous Binder to the Resistance to Raveling of Porous Asphalt, ”2nd Eurasphalt & Eurobitume Congress, Barcelona, Spain, pp. 500-508.

    Nakanishi, H., Asano, K. and Goto, K. (2000) “Study on Improvement in Durability of Porous Asphalt Concrete,” Proceeding of Road Engineering and Association of Asian and Australasia, Tokyo, Japan.

    Panda, M. and Mazumdar, M. (1999) “Engineering Properties of EVA-Modified Bitumen Binder for Paving Mixes,” Journal of Materials in Civil Engineering, Vol.11, pp.131-137.

    Pasetto, M.(2000). “Porous Asphalt Concretes with Added Microfibres,” 2nd Eurasphalt & Eurobitumen Congress, Beacelona, Spain, pp.438-447.

    Ruiz, A., R.Alberola, F.Pérez, and B.Sánchez. (1990). “Porous Asphalt Mixtures in Spain,”Transportation Research Record 1265,TRB,National Research Council, Washington,C.C., pp.87-94.

    Tan, S. A., T. F. Fwa, and K. C. Chai. (2004). "Drainage Considerations for Porous Asphalt Surface Course Design", Journal of the Transportation Research Board, Transportation Research Record No. 1868. Transportation Research Board of the National Academies, Washington, D.C., pp.142–149.

    Watson,D., A. Johnson and D. Jared. (1998). “Georgia Department of Transportation’s Progress in Open-Graded Friction Course Development,” Transportation Research Record 1616, TRB, National Research Council, Washington,D.C., pp.30-35.
    Wirtgen Group (2001). http://www.wirtgen.com.tw, Browse October 1, 2013

    無法下載圖示 校內:2025-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE