簡易檢索 / 詳目顯示

研究生: 黃品翔
Huang, Ping-Hsiang
論文名稱: 交叉橢圓套管非牛頓流體熱交換器之熱效能提升分析
Efficient enhancement for Non-Newtonian fluid double pipe heat exchangers with staggered oval inner sections
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 96
中文關鍵詞: 冪律型非牛頓流體流變特性交叉橢圓管耗散理論場協同原理
外文關鍵詞: Power law fluids, Staggered oval tubes, Entransy dissipation, Field synergy principle
相關次數: 點閱:119下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究非牛頓流體於交叉橢圓套管紊流強制對流熱傳遞之數值模擬,其內管為交叉橢圓管且為熱流管,外管為圓形絕熱冷流管,流道配置為逆流型,透過管壁傳遞熱能達到冷、熱流體的熱交換,首先以參考文獻中純水於交叉橢圓套管之模擬、實驗數據作驗證,結果相當吻合,其最大誤差在5%以內,接著進一步延伸至非牛頓流體。
    比較不同流變特性流體熱傳效率的差異,從而探討紐塞數、摩擦因子、熱性能以及當量熱阻以作為比較的依據。本文應用控制體積法數值求解紊流非牛頓流體之橢圓、耦合及穩態條件之三維統御偏微分方程。再使用 紊流模型作細部求解。經由場協同理論與耗散原理所推導出的速度場協同方程式完成管內流場之優化模擬。
    文中比較交叉橢圓管與圓管兩種結構的性能差異,模擬結果顯示,與圓管相比,流體流經交叉橢圓管時產生二次流、漩渦,在內管截面上產生8個渦流,外管截面則產生4個渦流,造成熱傳性能增強,但同時交叉橢圓管引起的擾動也會增加壓降。在研究範圍內,發現Power-law(n < 1)冪律型非牛頓流體具有的流變特性相較純水具有更好的熱傳性能,此外以場協同理論解釋二次流對於熱傳的影響,並計算橢圓扭曲管中的耗散率。結果顯示在交叉橢圓管中,扭曲的壁面使速度與溫度梯度有更好的協同性,因此可提高熱傳。
    從數值模擬結果可知Power-law(n < 1)冪律型非牛頓流體紐賽數大於純水,且具有更好的場協同角,其熱阻不僅相較純水低也隨雷諾數增加而下降,皆說明了Power-law(n < 1)冪律型非牛頓流體的優良表現,場協同佳與熱阻低也解釋了Power-law(n < 1)冪律型非牛頓流體之紐賽數比起純水高的現象,此外更說明了在本文研究中流體的流變特性為影響熱傳性能最重要的因素。
    關鍵字: 冪律型非牛頓流體流變特性、交叉橢圓管、耗散理論、場協同原理。

    Numerical simulations of power law fluid/water forced convection in double pipe heat exchangers with staggered oval inner sections are investigated. In comparison with double circular pipe heat exchangers. This study compares the differences in heat transfer efficiency of fluids with different rheological properties. Use power law fluid the goal is to enhance the total heat transfer efficiency in turbulent flow. In addition, we compare the difference between parallel flow and counter flow. The simulation results show that the counter flow model has better performance than the parallel flow.
    Heat exchangers with staggered oval inner sections create 8 vortexes in radial directions. The effects of these secondary flow are explained by the entransy dissipation rate 、the field synergy principle and thermal resistance to evaluate the overall heat transfer capability.
    The average Nusselt number and the pressure drop both increase with the increasing Reynolds number. We found that the Nusselt number of power law fluid(n<1) is larger than water and has a better field synergy angle. Besides, the thermal resistance of power law fluid(n<1) is lower than water. Hence, the use of power law fluid can achieve the effect of improving heat transfer efficiency.

    Keywords: Power law fluids, Staggered oval tubes, Entransy dissipation, Field synergy principle

    中英文摘要(論文以中文撰寫者須附英文延伸摘要) i 誌謝 vii 目錄 viii 表目錄 x 圖目錄 xi 符號表 xiv 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 1-3 文獻回顧 4 1-4 本文探討主題與研究方法 8 第二章 對流傳熱增強理論 9 2-1 場協同理論 9 2-2 熵增與對流傳熱過程的耗散 11 2-3 非牛頓流體理論與流變特性 17 第三章 非牛頓流體理論分析 22 3-1 空間流場解析 22 3-1-1 系統統御方程式 24 3-2 非牛頓流體理論 26 3-2-1 Ostwald-de-Waele冪律模型(power law equation) 26 3-2-2 Pseudo-plastic fluid and Power law model 29 3-3 紊流模式 32 3-4 邊界條件 34 3-5 數據計算 36 第四章 數值方法 40 4-1 概述 40 4-2 統御方程式的座標轉換 41 4-3 格點位置的配置 43 4-4 統御方程式的離散 44 4-5 壓力修正方程式 47 4-6 差分方程式的解法 50 4-7 收斂條件 50 第五章 結果與討論 52 5-1 網格獨立測試與數值驗證 55 5-2 流場特性分析 59 5-3 熱場特性分析 67 5-4 熱性能分析 79 5-5 非牛頓流體流變特性分析 83 第六章 結論與建議 87 6-1 結論 87 參考文獻 89

    [1] Chen, W. L., Dung, W. C. Numerical study on heat transfer characteristics of double tube heat exchangers with alternating horizontal or vertical oval cross section pipes as inner tubes. Energy Conversion and Management 2008;49:1574-1583.
    [2] Chen, W. L., Guo, Z. Y., Chen, C. K. A numerical study on the flow over a novel tube for heat-transfer enhancement with a linear eddy-viscosity model. Int J Heat Mass Transfer 2004;45:3431–9.
    [3] Chen, W. L., Fang, L. C. A numerical study on the flow over a staggered oval tube for heat-transfer enhancement. J CSME 2004;25:209–16.
    [4] Chen, W. L., Wong, K. L., Wong, K.-D. A parametric study on the laminar flow in an alternating horizontal or vertical oval cross-section pipe with computational fluid dynamics. Int J Heat Mass Transfer 2006;49:287–96.
    [5] Chen, W. L. A numerical study on the heat-transfer characteristics of an array of alternating horizontal or vertical oval cross-section pipes placed in a cross stream. J Refrig 2006;30:454–63.
    [6] Guo, Z. Y., A brief introduction to a novel heat-transfer enhancement heat exchanger, internal report (2003). Department of EMEMKLEHTEC, Tsinghua University, Beijing, China.
    [7] Yildiz C., Bicer Y., Pehlivan D. Influence of fluid rotation on the heat transfer and pressure drop in double-pipe heat exchangers. Appl Energy 1996;54:49–56.
    [8] Alkam, M. K., Al-Nimr, M. A. Improving the performance of doublepipe heat exchangers by using porous substrates. Int J Heat Mass Transfer 1999;42:3069–618.
    [9] Venkatarathnam G., Narayanan, S. P. Performance of a counter flow heat exchanger with longitudinal heat conduction through the wall separating the fluid streams from the environment. Cryogenics 1999;39:811–9.
    [10] Estel L., Bagui F., Abdelghani-Idrissi, M. A., Thenard C. Distributed state estimation of a counter current heat exchanger under varying flow rate. Comput Chem Eng 2000;24:53–60.
    [11] Abdelghani-Idrissi, M. A., Bagui F., Estel L. Analytical and experimental response time to flow rate step along a counter flow double pipe heat exchanger. Int J Heat Mass Transfer 2001;44:3721–30.
    [12] Durmus A., Durmus A., Esen M. Investigation of heat transfer and pressure drop in a concentric heat exchanger with snail entrance. Appl Thermal Eng 2002;22:321–32.
    [13] Kavak, E. K., Bicer Y. Investigation of heat transfer and energy loss in a concentric double pipe exchanger equipped with swirl generators. Int J Thermal Sci 2005;44:598–607.
    [14] Rennie, T. J., Raghavan VGS. Numerical studies of double-pipe helical heat exchanger. Appl Thermal Eng 2006;26:1266–73.
    [15] Kumar V., Saini S., Sharma M., Nigam KDP. Pressure drop and heat transfer study in tube-in-tube helical heat exchanger. Chem Eng Sci 2006;61:4403–16.
    [16] Ren C., Yang H. An analytical model for the heat and mass transfer processes in indirect evaporative cooling with parallel/counter flow configurations. Int J Heat Mass Transfer 2006;49:617–27.
    [17] Asmantas, L. A., Nemira, M. A., Trilikauskas V.V., “Coefficients of heat transfer and hydraulic drag of a twisted oval tube.” Heat Transfer-Soviet Research, Vol. 17, pp. 103-109, 1985.
    [18] Rennie, T. J., Raghavan, G. S. Thermally dependent viscosity and non-Newtonian flow in a double-pipe helical heat exchanger, Appl. Therm. Eng. 27 (2007) 862e868.
    [19] Carezzato, A., Alcantara, M. R., Telis-Romero, J., Tadini, C. C., Gut, J. A. W. Non-newtonian heat transfer on a plate heat exchanger with generalized configurations, Chem. Eng. Technol. 30 (2007) 21-26.
    [20] Gao, S. X., Hartnett, J. P. Steady flow of non-Newtonian fluids through rectangular ducts. Int Commun Heat Mass Transfer 1993;20:197-210.
    [21] Gao, S. X., Hartnett, J. P. Heat transfer behavior of Reiner-Rivlin fluids in rectangular ducts. Int J Heat Mass Transfer 1996;39:1317-24.
    [22] Chang, P. Y., Chou¬, F. C., Tung, C. W. Heat transfer mechanism for Newtonian and non-Newtonian fluids in 2:1 rectangular ducts. Int J Heat Mass Transfer 1998;41:3841-56.
    [23] Cassio Roberto Macedo Maia., João Batista Aparecido., Luiz Fernando Milanez. Heat transfer in laminar flow of non-Newtonian fluids in ducts of elliptical section. International Journal of Thermal Sciences 45 (2006) 1066–1072.
    [24] Shin Sehyun., Cho, Y. I. Temperature effect on the non-newtonian viscosity of an aqueous polyacrylamide solution. Int. Comm. Heat Mass Transfer Vol. 20, pp. 831-844, 1993.
    [25] Yang Lin., Tian, J. L., Yang Zhi., Li You., Fu, C. H., Zhu, Y. H., Pang, X. L. Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field. Petroleum 1 (2015) 68-74.
    [26] A. Bejan, “Study of entropy generation in fundamental convective heat transfer,” J. Heat Transfer – Trans. ASME, Vol. 101 (4), pp. 718–725, 1979.
    [27] L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev. 38 (12) (1931) 2265–2279.
    [28] L. Onsager, S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91 (6) (1953) 1505–1512.
    [29] I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, third ed., Wiley, New York, 1967, pp. 76–77.
    [30] A. Bejan, Entropy Generation through Heat and Fluid Flow, Wiley, New York, 1982, pp. 118–134.
    [31] A. Bejan, Entropy Generation Minimization, CRC Press, Florida, 1996, pp. 47–112.
    [32] Shah, R. K., Skiepko T., “Entropy generation extrema and their relationship with heat exchanger effectiveness – number of transfer unit behavior for complex flow arrangements,” J. Heat Transfer – Trans. ASME, Vol. 126 (6), pp. 994–1002, 2004.
    [33] Guo, Z. Y., Zhu, H. Y., Liang X. G., “Entransy – a physical quantity describing heat transfer ability, Int. J. Heat Mass Transfer, Vol. 50, pp. 2545–2556, 2007.
    [34] Chen Q., Wang M., Pan N., et al., “Optimization principles for convective heat transfer,” Energy, Vol. 34 (9), pp. 1199–1206, 2009.
    [35] Chen, Q., Liang, X. G., Guo, Z. Y., “Entransy theory for the optimization of heat transfer - A review and update,” International Journal Of Heat And Mass Transfer Vol. 63, pp. 65–81, 2013.
    [36] Guo, Z. Y., Li, D. Y., Wang, B. X., “A novel concept for convective heat transfer enhancement,” International Journal of Heat and Mass Transfer, Vo. 41, Issue 14, pp. 2221–2225, 1998.
    [37] 孟繼安.基於場協同理論的縱向渦強化換熱技術及其應用.北京:清華大學,2001.
    [38] 陳群.對流換熱過程的不可逆性及其優化.北京:清華大學,2008.
    [39] Webb, R. L. and E. R. G. Eckert, “Application of rough surfaces to heat exchanger design,” International Journal of Heat and Mass Transfer, 15(9), pp. 1647–1658, 1972.
    [40] 過增元,梁新剛. 積-描述物體傳遞熱量能力的物理量.自然科學發展, 16(10):1288~1296, 2006.
    [41] 過增元.對流換熱的物理機制及其控制:速度場與熱流場的協同.科學通報, 45(19): 2118~2122, 2000.
    [42] 昊晶,熱學中的勢能(積)及其應用.北京:清華大學, 2009.
    [43] 昊晶,梁新剛.積值耗散原理在輻射換熱優化中的應用.中國科學, 39(2):272~277, 2009.
    [44] Bogue, D. C. (1959) Entrance effects and prediction of turbulence in non-Newtonian flow, Ind. Eng. Chem. 51.874-878.
    [45] Kapur, J. N. and Gupta, R. C. (1963) Power-law fluid flow in the inlet length of a circular pipe, The Mathematics Seminar 3, 55-67.
    [46] Collins, M. and Schowalter, W. R. (1963) Behavior of non-Newtonian fluids in the entry region of a circular pipe, A. I. Ch. E. J. 9, 804-809.
    [47] Gupta, R. C. (1969) Flow behaviour of power-law fluids in the entry region of a circular pipe, J. Mkt. 8. 207-220.
    [48] Gupta, R. C. (1981) Hydrodynamic inlet region flow of power-law fluids in a circular tube, ZAMM 61, 299-303.
    [49] Matras, Z. and Nowak, Z. (1983) Laminar entry flow problem for power law fluids, Acta Mech. 48, 81-90.
    [50] Launder, B. E., Sharma, B. I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Int. J. Heat Mass Transfer 1 (1974) 131.
    [51] Chen, W. L., Lien, F. S., Leschziner, M. A. Non-linear Eddy-viscosity modeling of transitional boundary layers pertinent to turbomachine aerodynamics, Int. J. Heat Fluid Flow 19 (1998) 297–306.
    [52] Patankar, S. V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
    [53] Patankar, S. V., Spalding, D. B., “A calculation process for heat, mass and momentum transfer in three-dimension parabolic flows,” International Journal Heat Mss Transfer, vol. 15, pp. 1787-11806, 1972.
    [54] Bird, R. B., Armstrong, R. C. and Hassager, O., Dynamics of Polymeric Liquids 2nd edn, Vol. 1, Wiley, New York (1987).
    [55] Carreau, P. J., Dekee, D. and Chhabra, R. P., Rheology of Polymeric Systems: Principles and Applications, Hanser, Munich (1997).
    [56] Bird, R. B., Annu. Rev. Fluid Mech. 8 (1976) 13.
    [57] Carreau, P. J. 1972 Rheological equations from molecular network theories. Trans. Soc. Rheolo. 16, 1, 99.
    [58] Johnson, A. T., Biological Process Engineering , Wiley , New York (1999).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE