簡易檢索 / 詳目顯示

研究生: 陳玟婷
Chen, Wen-Ting
論文名稱: 探討肺炎鏈球菌DNA聚合酶I之生化特性
Biochemical Studies of Streptococcus pneumoniae DNA Polymerase I
指導教授: 阮振維
Ruan, Jhen-Wei
共同指導教授: 陳呈堯
Chen, Cheng-Yao
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 78
中文關鍵詞: 肺炎鏈球菌DNA 合成DNA 聚合酶I二價金屬離子核糖核酸酶 H岡崎片段
外文關鍵詞: S. pneumoniae, DNA replication, DNA polymerase I, Divalent metal cations, RNase H, Okazaki fragments
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺炎鏈球菌是伺機性的病原菌,通常潛伏在上呼吸道,當幼兒或免疫力低下的病人發病時,其病菌會入侵下呼吸道及其他部位,造成腦膜炎、敗血症及群聚的肺炎。隨著抗藥性的肺炎鏈球菌的急遽上升,已經引發了全球百萬人民的死亡。肺炎鏈球菌獲得抗藥性基因的方式是透過DNA的重組,當感受到外在環境給予的壓力時(例如:抗生素的投藥),會啟動重組的機制將對之有利的外在基因嵌進細菌的基因體中以此存活。諷刺的是,本該殺菌的抗生素在歷經世代投藥的篩選,導致抗藥基因快速傳播,使肺炎鏈球菌儼然成為多重抗藥性的「超級細菌」。然而基因重組及修復機制尚未明瞭。先前研究指出肺炎鏈球菌的DNA 聚合酶I,本研究簡稱SpPol I,對於DNA 複製、修復、重組的過程極為重要,但其真正的角色是如何參與其中還未被完整討論。透過蛋白質序列的比對,我們發現SpPol I 與大腸桿菌DNA 聚合酶I (EcPol I) 互為同源關係。SpPol I 擁有5端核酸外切酶及DNA 聚合酶的特性,唯獨缺少3端往5端的核酸外切酶功能,表示無校正DNA 合成時產生錯誤的能力。而在先前基因剔除的研究內容證實,SpPol I 上的5端核酸外切酶區域對於肺炎鏈球菌的生長及存活是不可或缺的,但此區域的真正特性及是否參與DNA複製過程都還未被明確定義。在本篇研究中,我們首先表達並純化SpPol I 及其5端外切酶上帶有突變的蛋白。在DNA 引子延伸的實驗中,SpPol I 表現出DNA 切口平移、DNA鏈置換、5端外切酶、5端flap核酸內切酶以及相似於核糖核酸酶H的活性。而將5端外切酶區域上可能與金屬離子契合的天門冬胺酸殘基進行突變 (D116A與D139A),會大幅去除其5端外切酶、5端flap核酸內切酶以及相似於核糖核酸酶H的酵素活性。特別的是,在輔因子二價鎂離子催化下,SpPol I傾向DNA合成反應,但換成二價錳離子時,SpPol I則傾向降解反應,說明5端外切酶區域及DNA 聚合區域可能需要不同輔因子來催化能力。除此之外,實驗結果也展現了SpPol I上的5端外切酶區域及DNA 聚合區域在DNA複製過程能一起合作填補間隙,從雙股DNA或RNA-DNA結構置換下游的DNA或RNA鏈,留下可黏的切點供肺炎鏈球菌連接酶 (SpLigA) 進行連接,恢復了完整的雙股DNA結構。總歸而言,我們推測SpPol I 可能對於肺炎鏈球菌內基因體複製中岡崎片段的成熟及基因修復重組過程,扮演移除DNA或RNA引子的重要角色。

    Streptococcus pneumoniae (S. pneumoniae) is the opportunistic pathogen that normally colonizes the upper respiratory tract and causes lethal community-acquired pneumonia, meningitis, and sepsis in children or immunocompromised adults. The acquisition of multidrug-resistant genes among drug-resistant S. pneumoniae strains have transformed the bacteria to become “superbugs”. The surge of antibiotic-resistant S. pneumoniae annually causes millions of deaths worldwide. The acquisition of drug-resistance by S. pneumoniae is commonly via the direct exchange of its own genomic DNA with exogenous drug-resistant genes by DNA recombination. However, the mechanism of DNA replication and recombination in S. pneumoniae remains unknown. Previous studies have shown that the DNA polymerase I of S. pneumoniae (SpPol I) is required for DNA replication, repair, and recombination pathways. How SpPol I involves in these processes is still unclear. SpPol I is homologous to Escherichia coli DNA polymerase I (EcPol I) and contains a functional 5’→ 3’ exonuclease (5’-Exo) and a DNA polymerase domain (Pol). SpPol I naturally lack a 3’→5’ exonuclease, or error-proofreading function. The gene-deletion study has confirmed the requirement of 5’-Exo domain of SpPol I for the growth and viability of S. pneumoniae. However, the intrinsic property and function of this domain is not well characterized. In this study, we cloned, expressed, and purified SpPol I and its 5’-Exo mutants. In the in vitro biochemical assays, SpPol I shows multiple enzymatic activities, including DNA nick-translation, strand-displacement synthesis, 5’-exonuclease (5’-Exo), 5’-flap endonuclease (5’-Fen), and RNase H-like activities. The mutations at the conserved aspartate residues (D116A and D139A) of 5’-Exo domain greatly abolish the 5’-Exo, 5’-Fen, and RNase H-like activities. Moreover, the 5’-Exo and Pol functions of SpPol I prefer different divalent metal cations as cofactors. The divalent Mg2+ ions greatly stimulate the DNA polymerase activity of SpPol I. On the contrary, the Mn2+ ions enhance the 5’-Exo functions of SpPol I. The 5’-Exo and Pol functions of SpPol I can work together to fill in the DNA gap and remove the downstream DNA or RNA primer from the duplex DNA or hybrid RNA/DNA structure. The cooperative reactions of 5’-Exo and Pol functions of SpPol I leave a ligatable DNA nick, which can be sealed by SpLigA to restore the integrity of double-stranded DNA. Taken together, SpPol I may play a critical role in DNA replication, DNA repair and recombination in S. pneumoniae.

    摘要...I Abstract...III 誌謝...V List of Tables...X List of Figures...XI 1. Introduction...1 1.1. The pathogenesis and prevalence of Streptococcus pneumoniae...1 1.2. The existing treatments against the S. pneumoniae infection...2 1.3. The occurrence of “superbugs” S. pneumoniae due to antibiotics stresses...3 1.4. The genome replication and DNA polymerase I of S. pneumoniae...4 1.5. The specific aims of this study...5 2. Materials and Methods...6 2.1. Materials...6 2.2. Bacterial strains and plasmids...6 2.3. DNA cloning...7 2.4. Expression and purification of S. pneumoniae DNA polymerase I and its 5’-Exo mutants...8 2.5. Expression and purification of S. pneumoniae DNA Ligase A (SpLigA)...9 2.6. Urea-polyacrylamide gel electrophoresis (Urea- PAGE)..11 2.7. Oligonucleotides...11 2.8. In vitro primer-extension assay...12 2.9. The utilization of metal ions by SpPol I in the primer extension and degradation assays...12 2.10. 5’→3’ Exonuclease Assays...13 2.11. Strand-displacement and nick-translation assays..14 2.12. DNA polymerase- Ligase coupling assay...15 3. Results...16 3.1. Expression and purification of recombinant SpPol I...16 3.2. The divalent cations are required for both 5’→3’ exonuclease and DNA polymerase activities of SpPol I...16 3.3. Mg2+ ions are required for efficient DNA synthesis function of SpPol I, while Mn2+ ions enhance DNA degradation activity of SpPol I...17 3.4. The D116A or/and D139A mutations on 5’→3’ exonuclease domain eliminates DNA degradation activity...17 3.5. In the presence of Mg2+, the 5’→3’ exonuclease of SpPol I preferentially degrades blunt-end, double- stranded (ds) DNA over single-stranded (ss) DNA...18 3.6. In the presence of Mn2+, the 5’→3’ exonuclease of SpPol I shows a stronger degradation activity on both ssDNA and dsDNA substrates...19 3.7. In the presence of Mn2+, SpPol I shows an intrinsic RNase H-like activity...19 3.8. The DNA polymerase domain of SpPol I has DNA gap- filling, strand-displacement synthesis, and nick- translational functions...20 3.9. SpPol I shows strand displacement synthesis and nick- translational functions on RNA gap/nick substrates while using Mn2+ as cofactors...21 3.10. SpPol I has an intrinsic 5’-flap (5’-Fen) endonuclease activity...22 3.11. The cleavage of 5’-flapped DNA, but not RNA structure, by SpPol I generates a ligatable DNA nick, which can be sealed by DNA ligase A of S. pneumoniae (SpLigA)...23 4. Discussion...24 4.1. The role of Asp116 and Asp139 residues for the 5’ → 3’ exonuclease domain of SpPol I...24 4.2. The two divalent metal cations for SpPol I functions...25 4.3. The physiological roles of manganese (Mn2+) in S. pneumoniae...26 4.4. The possible impacts of manganese (Mn2+) in DNA replication of S. pneumoniae...27 4.5. The functions of SpPol I in the S. pneumoniae DNA repair...28 4.6. The roles of SpPol I in the homologous recombination of S. pneumoniae...29 4.7. The cooperation between the 5’ → 3’ exonuclease and DNA polymerase of SpPol I during DNA synthesis...30 4.8. Summary...32 5. References...33 6. Tables...40 Table 1. Oligonucleotides used in the biochemical assays...40 Table 2. Oligonucleotides used in the DNA cloning...41 7. Figures...42 8. Appendix...77 Appendix 1. The pD871-SpPol I map...77 Appendix 2. The protein sequence alignments of 5’→ 3’ exonuclease domains of E. coli and S. pneumoniae DNA polymerase I...78

    1. Abdullahi, O., et al. (2012). "The prevalence and risk factors for pneumococcal colonization of the nasopharynx among children in Kilifi District, Kenya." Plos One 7(2): e30787.
    2. Amblar, M., et al. (2001). "Biochemical analysis of point mutations in the 5'-3' exonuclease of DNA polymerase I of Streptococcus pneumoniae. Functional and structural implications." Journal of Biological Chemistry 276(22): 19172-19181.
    3. Amblar, M. and P. Lopez (1998). "Purification and properties of the 5'-3' exonuclease D190-->A mutant of DNA polymerase I from Streptococcus pneumoniae." European Journal of Biochemistry 252(1): 124-132.
    4. Andrews, N. J., et al. (2014). "Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study." Lancet Infectious Diseases 14(9): 839-846
    5. Baldwin, G. S., et al. (1999). "DNA cleavage by the EcoRV restriction endonuclease: roles of divalent metal ions in specificity and catalysis." Journal of Molecular Biology 288(1): 87-103.
    6. Beckman, R. A., et al. (1985). "On the fidelity of DNA replication: manganese mutagenesis in vitro." Biochemistry 24(21): 5810-5817.
    7. Beese, L. S. and T. A. Steitz (1991). "Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism." EMBO Journal 10(1): 25-33.
    8. Bornhorst, J. A. and J. J. Falke (2000). "Purification of proteins using polyhistidine affinity tags." Methods in Enzymology 326: 245-254.
    9. Bruckner, R., et al. (2004). "Mosaic genes and mosaic chromosomes-genomic variation in Streptococcus pneumoniae." International Journal of Medical Microbiology 294(2-3): 157-168.
    10. Ceska, T. A., et al. (1996). "A helical arch allowing single-stranded DNA to thread through T5 5'-exonuclease." Nature 382(6586): 90-93.
    11. Cherazard, R., et al. (2017). "Antimicrobial Resistant Streptococcus pneumoniae: Prevalence, Mechanisms, and Clinical Implications." American Journal of Therapeutics 24(3): e361-e369.
    12. Craggs, T. D., et al. (2019). "Substrate conformational dynamics facilitate structure-specific recognition of gapped DNA by DNA polymerase." Nucleic Acids Research 47(20): 10788-10800.
    13. Croucher, N. J., et al. (2011). "Rapid pneumococcal evolution in response to clinical interventions." Science 331(6016): 430-434.
    14. Daniels, C. C., et al. (2016). "A Review of Pneumococcal Vaccines: Current Polysaccharide Vaccine Recommendations and Future Protein Antigens." J Pediatr Pharmacol Ther 21(1): 27-35.
    15. Diaz, A., et al. (1992). "The 5' to 3' exonuclease activity of DNA polymerase I is essential for Streptococcus pneumoniae." Molecular Microbiology 6(20): 3009-3019.
    16. Diaz, A., et al. (1992). "Streptococcus pneumoniae DNA polymerase I lacks 3'-to-5' exonuclease activity: localization of the 5'-to-3' exonucleolytic domain." Journal of Bacteriology 174(6): 2014-2024.
    17. El-Deiry, W. S., et al. (1984). "Molecular mechanisms of manganese mutagenesis." Proceedings of the National Academy of Sciences of the United States of America 81(23): 7378-7382.
    18. Embry, A., et al. (2007). "Regions of Diversity 8, 9 and 13 contribute to Streptococcus pneumoniae virulence." BMC Microbiology 7: 80.
    19. Fukushima, S., et al. (2007). "Reassessment of the in vivo functions of DNA polymerase I and RNase H in bacterial cell growth." Journal of Bacteriology 189(23): 8575-8583.
    20. Ganai, R. A., et al. (2015). "Switching between polymerase and exonuclease sites in DNA polymerase epsilon." Nucleic Acids Research 43(2): 932-942.
    21. Garcia-Ortiz, M. V., et al. (2011). "Unexpected role for Helicobacter pylori DNA polymerase I as a source of genetic variability." Plos Genetics 7(6): e1002152.
    22. Gutman, P. D. and K. W. Minton (1993). "Conserved sites in the 5'-3' exonuclease domain of Escherichia coli DNA polymerase." Nucleic Acids Research 21(18): 4406-4407.
    23. Hammitt, L. L., et al. (2006). "Indirect effect of conjugate vaccine on adult carriage of Streptococcus pneumoniae: an explanation of trends in invasive pneumococcal disease." Journal of Infectious Diseases 193(11): 1487-1494.
    24. Hamperl, S. and K. A. Cimprich (2014). "The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability." DNA Repair (Amst) 19: 84-94.
    25. Heesemann, J. (1993). Mechanisms of resistance to beta-lactam antibiotics. Infection 21 Suppl 1: S4-9.
    26. Ho, D. L., et al. (2004). "Structure-specific DNA-induced conformational changes in Taq polymerase revealed by small angle neutron scattering." Journal of Biological Chemistry 279(37): 39146-39154.
    27. Hutfilz, C. R., et al. (2019). "Manganese Is Required for the Rapid Recovery of DNA Synthesis following Oxidative Challenge in Escherichia coli." Journal of Bacteriology 201(24).
    28. Jakubovics, N. S. and H. F. Jenkinson (2001). "Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria." Microbiology 147(Pt 7): 1709-1718.
    29. Johnston, J. W., et al. (2006). "Mn2+-dependent regulation of multiple genes in Streptococcus pneumoniae through PsaR and the resultant impact on virulence." Infection and Immunity 74(2): 1171-1180.
    30. Joyce, C. M. and T. A. Steitz (1994). "Function and structure relationships in DNA polymerases." Annual Review of Biochemistry 63: 777-822.
    31. Keller, L. E., et al. (2016). "Nonencapsulated Streptococcus pneumoniae: Emergence and Pathogenesis." mBio 7(2): e01792.
    32. Kim, Y., et al. (1995). "Crystal structure of Thermus aquaticus DNA polymerase." Nature 376(6541): 612-616.
    33. Lopez, P., et al. (1987). "Streptococcus pneumoniae polA gene is expressed in Escherichia coli and can functionally substitute for the E. coli polA gene." Journal of Bacteriology 169(10): 4869-4871.
    34. Lorenz, M. G. and W. Wackernagel (1994). "Bacterial gene transfer by natural genetic transformation in the environment." Microbiological Reviews 58(3): 563-602.
    35. Lu, C. Y. and L. M. Huang (2016). "Is pneumococcal serotype replacement impending?" Pediatrics and Neonatology 57(5): 363-364.
    36. Makiela-Dzbenska, K., et al. (2009). "Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity." Molecular Microbiology 74(5): 1114-1127.
    37. Marians, K. J., et al. (1998). "Role of the core DNA polymerase III subunits at the replication fork. Alpha is the only subunit required for processive replication." Journal of Biological Chemistry 273(4): 2452-2457.
    38. Martinez, S., et al. (1987). "Complementation of Bacillus subtilis polA mutants by DNA polymerase I from Streptococcus pneumoniae." Molecular and General Genetics 210(2): 203-210.
    39. Mizrahi, V. and P. Huberts (1996). "Deoxy- and dideoxynucleotide discrimination and identification of critical 5' nuclease domain residues of the DNA polymerase I from Mycobacterium tuberculosis." Nucleic Acids Research 24(24): 4845-4852.
    40. Morona, J. K., et al. (2002). "Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase." Journal of Bacteriology 184(2): 577-583.
    41. O'Brien, K. L., et al. (2009). "Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates." Lancet 374(9693): 893-902.
    42. Ogunniyi, A. D., et al. (2010). "Central role of manganese in regulation of stress responses, physiology, and metabolism in Streptococcus pneumoniae." Journal of Bacteriology 192(17): 4489-4497.
    43. Pomerantz, R. T., et al. (2013). "DNA polymerases are error-prone at RecA-mediated recombination intermediates." Cell Cycle 12(16): 2558-2563.
    44. Pomerantz, R. T., et al. (2013). "Preferential D-loop extension by a translesion DNA polymerase underlies error-prone recombination." Nature Structural & Molecular Biology 20(6): 748-755.
    45. Ponder, R. G., et al. (2005). "A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation." Molecular Cell 19(6): 791-804.
    46. Rastogi, R. P., et al. (2010). "Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair." J Nucleic Acids 2010: 592980.
    47. Ratmeyer, L., et al. (1994). "Sequence specific thermodynamic and structural properties for DNA.RNA duplexes." Biochemistry 33(17): 5298-5304.
    48. Roberts, R. W. and D. M. Crothers (1992). "Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition." Science 258(5087): 1463-1466.
    49. Slager, J., et al. (2014). "Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin." Cell 157(2): 395-406.
    50. Straume, D., et al. (2015). "Natural transformation and genome evolution in Streptococcus pneumoniae." Infection, Genetics and Evolution 33: 371-380.
    51. Tan, S. Y. and Y. Tatsumura (2015). "Alexander Fleming (1881-1955): Discoverer of penicillin." Singapore Medical Journal 56(7): 366-367.
    52. Thomas, M., et al. (1976). "Hybridization of RNA to double-stranded DNA: formation of R-loops." Proceedings of the National Academy of Sciences of the United States of America 73(7): 2294-2298.
    53. Van Houten, B. (1990). "Nucleotide excision repair in Escherichia coli." Microbiological Reviews 54(1): 18-51.
    54. Vos, Q., et al. (2000). "B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms." Immunological Reviews 176: 154-170.
    55. Wahl, B., et al. (2018). "Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15." Lancet Glob Health 6(7): e744-e757.
    56. Weiser, J. N., et al. (2018). "Streptococcus pneumoniae: transmission, colonization and invasion." Nature Reviews: Microbiology 16(6): 355-367.
    57. Xie, P. and J. R. Sayers (2011). "A model for transition of 5'-nuclease domain of DNA polymerase I from inert to active modes." PloS One 6(1): e16213.
    58. Xu, Y., et al. (1997). "Biochemical and mutational studies of the 5'-3' exonuclease of DNA polymerase I of Escherichia coli." Journal of Molecular Biology 268(2): 284-302.
    59. Yahiaoui, R. Y., et al. (2016). "Prevalence and antibiotic resistance of commensal Streptococcus pneumoniae in nine European countries." Future Microbiology 11: 737-744.
    60. Yang, W. (2008). "An equivalent metal ion in one- and two-metal-ion catalysis." Nature Structural & Molecular Biology 15(11): 1228-1231.
    61. Yesilkaya, H., et al. (2000). "Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae." Infection and Immunity 68(5): 2819-2826.
    62. Zhang, Y. B., et al. (1997). "The rnhB gene encoding RNase HII of Streptococcus pneumoniae and evidence of conserved motifs in eucaryotic genes." Journal of Bacteriology 179(12): 3828-3836.
    63. Zhao, G., et al. (2014). "Effects of cations on small fragment of DNA polymerase I using a novel FRET assay." Acta Biochim Biophys Sin (Shanghai) 46(8): 659-667.

    下載圖示 校內:2025-06-01公開
    校外:2025-06-01公開
    QR CODE