| 研究生: |
高崇銘 Gao, Chong-Ming |
|---|---|
| 論文名稱: |
配置LSCMD多自由度系統採用最小能量控制律之即時複合試驗 Real-Time Hybrid Testing of MDOF System Equipped with LSCMD by Adopting Least Energy Method |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 半主動控制 、槓桿式勁度可控質量阻尼器 、最小能量法控制律 、複合實驗 |
| 外文關鍵詞: | Semi-Active Control, Leverage-type Stiffness Controlled Mass Damper, Least Energy Method, Real-Time Hybrid Testing |
| 相關次數: | 點閱:264 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
槓桿式勁度可控質量阻尼器(Leverage-type Stifness Controlable Mass Damper , LSCMD)於單自由度實驗驗證已有相當多文獻參考。然而於現實中皆為多自由度之高樓結構,因此本文將最小能量法(Least Energy Method)嵌於LSCMD中,並透過模擬程式針對現有之兩代機構LSCMD I及LSCMD II置於高樓結構進行模擬比較。對於多自由度中最小能量法半主動控制律若欲實現則需回授所有樓層之訊號,因此本文提出簡化模型並透過模擬初步驗證其可行性,同時模擬高摩擦(高等值阻尼比)以及低摩擦(低等值阻尼比)之調諧質量阻尼器其半主動控制成效之優劣,文中模擬結果亦顯示低摩擦機構其半主動控制將有更多之發揮空間,如此即可於實際應用上加裝較低成本之低等值之阻尼器。最後於文末透過複合實驗之技術進行多自由度結構之實驗驗證,透過模擬與實驗歷時比較確認其可行性,惟LSCMD II因硬體限制導致其結果不如預期。另外本文亦介紹現有兩機構之控制硬體設備,為後續研究者加以熟悉及推廣應用。
The performance of the Leverage-type Stiffness Controlled Mass Damper (LSCMD) had been verified in single-degree-of-freedom experiments. In order to apply Least Energy Method (LEM) control law to LSCMD with a multiple-degree-of-freedom,simulation results are given in this study. However, the computation of control command requires full-state signals feedback, it must to be face many difficult obstacle. To resolve this problem, the simplified numerical model which is utilized to easily compute this control law is proposed in this study. In addition, the performance comparison of the first generation LSCMD(LSCMD I) system whose equivalent damping ratio is high and the second generation LSCMD(LSCMD II) system also proposed. To verify the feasibility of the LSCMD system whose control force is computed based on the simplified numerical model, real time hybrid testing for the LSCMD I and the LSCMD II is conducted.
[1] Frahm, H., “Device for Damping Vibration of Bodies”, US Patent, No. 989958, (1909).
[2] Lin, C.C., Hu, C.M., Wang, J.F., Hu, R.Y., “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, Vol. 17, No. 3, pp. 367-376, (1994).
[3] McNamara, R. J., ”Tuned Mass Dampers for Buildings”, Journal of the Structural Division (ASCE), Vol. 103, No. 9, pp. 1785-1798, (1977).
[4] Wiesner, K. B., ”Tuned Mass Dampers to Reduce Building Wind Motion”, Convention and Exposition (ASCE), Boston, Mass., April 2-6, (1979).
[5] Den Hartog, J.P., “Mechanical Vibrations, 4th edn”, McGraw Hill, New York, (1956).
[6] Uang, C.M., Bertero, V.V., “Evaluation of Seismic Energy in Structures” , Earthquake Engineering & Structural Dynamics., Vol. 19, No. 1, pp. 77.90, (1990).
[7] Wong, K.K.F., “Seismic Energy Dissipation of Inelastic Structures with Tuned Mass Dampers”, Journal of Engineering Mechanics, Vol. 134, No. 2 , pp. 163.172, (2008).
[8] Warburton G.B., “Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters”, Earthquake Engineering and Structural Dynamics, Vol. 10, No. 3, pp.381-401, (1982).
[9] Chu, S.Y., Soong, T.T., Reinhorn, A.M., “Active, Hybrid and Semi-active Structural Control: A Design and Implementation Handbook” ,John Wiley & Sons, Inc., New York, (2005).
[10] Soong, T.T., “Active Structural Control: Theory and Practice”, John Wiley & Sons, Inc., New York, (1990).
[11] Sack, R.L., Patten, W.N., “Semi-active Hydraulic Structural Control”, Proceedings of the International Workshop on Structural Control, Honolulu, Hawaii, USC Publication CE-9311, pp. 417-431, (1993).
[12] Symans, M.D., Constanionu, M.C., “Semi-active Control Systems for Seismic Protection of Structures: A State-of-the-art Review”, Engineering Structures, Vol. 21, No. 6, pp. 469-487, (1999).
[13] Hrovat, D., Barak, P., Rabins, M., “Semi-Active versus Passive or Active Tuned Mass Dampers For Structural Control”, Journal of Engineering Mechanics (ASCE), Vol. 109, No. 3, pp. 691-705, (1983).
[14] Varadarajan, N., Nagarajaiah, S., “Wind Response Control of Building with Variable Stiffness Tuned Mass Damper Using Empirical Mode Decomposition/Hilbert Transform”, Journal of Engineering Mechanics (ASCE), Vol. 130, No. 4, pp. 451-458, (2004).
[15] Nagarajaiah, S., “Hardening Duffing Oscillator Attenuation using a nonlinear TMD, a semi-active TMD and multiple TMD” S Journal of Sound and Vibration, Vol.322, No.4, pp. 674-686, (2013)
[16] Chey, M. H., Chase, J. G., “Semi-active Tuned Mass Damper Building systems: Design”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 2, pp. 119-139,(2010).
[17] Chey, M. H., Chase, J. G., “Semi-active tuned mass damper building systems: Application”, Earthquake Engineering and Structural Dynamics, Vol. 39, No. 1, pp. 69-89,(2010).
[18] Alka, Y. Pisal. , “DYNAMIC RESPONSE OF STRUCTURE WITH SEMI-ACTIVE TUNED MASS FRICTION DAMPER”, International Journal of Structural and Civil Engineering Research, Vol. 2, No. 1 ,(2013)
[19] Lu, L.Y., “Predictive control of seismic structures with semi-active friction dampers”, Earthquake Engineering and Structural Dynamics, Vol.33, No. 5, pp.647-668. ,(2004)
[20] Lu, L.Y., Hsu, C.C., Yeh, S.W., “A Leverage-type Semi-active Isolation System for Seismic Structures in Near-fault Regions (in Chinese)” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 21, No. 3, pp. 319-338,(2009).
[21] Lu, L.Y., Lin, T.K., Yeh, S.W., “Experiment and Analysis of A Leverage-type Stiffness Controllable Isolation System for Seismic Engineering” Earthquake Engineering and Structural Dynamics, Vol. 39, No. 15, 1711-1736, (2010).
[22] Lu, L.Y., Lin, G.L., Kuo, T.C., “Stiffness controllable isolation system for near-fault seismic isolation” Earthquake Structures, Vol. 30, No. 3, 747-765,(2008).
[23] Chu, S.Y., Lin, C.C., Chung, L.L., Chang, C.C., Lu, K.H., “Optimal Performance of Discrete-time Direct Output-feedback Structural Control with Delayed Control Forces”, Structrual Control and Health Monitoring, Vol. 15, No. 1, pp. 22-42, (2008).
[24] Chu, S.Y., Yeh, S. W., Lu, L.Y., Peng, C.H., “A leverage-type stiffness controllable mass damper for vibration mitigation of structures”, Structrual Control and Health Monitoring, Vol. 24, No. 4,pp.9-21,(2016)
[25] Sadek F, Mohraz B, Taylor AW, Chung RM. “A method of estimating the parameters of tuned mass dampers for seismic applications. ” Earthquake Engineering & Structural Vol. 26, No 6,pp.617–635.(1997)
[26] Mitsubishi Electric, “FX3G SERIES PROGRAMMABLE COTROLLERS USER’S MANUAL”, (2015)
[27] Panasonic, “AC Servo Motor Driver MINAS A-seris Operating Manual”
[28] National Instruments, “Universal Motion Interface (NMI) Accessory”
[29] 李文誠,「勁度可控式質量阻尼器之減振研究」,國立成功大學土木工程研究所,碩士論文 (2009)。
[30] 盧煉元、林錦隆,中華民國發明專利,專利名稱:可控式隔震系統。專利字號:發明第I308610號,專利證書日期:98年4月11日,專利期限:民國2009年4月11日至2025年10月27日止。
[31] 盧煉元、郭子敬、林錦隆,「勁度可控式滑動隔震系統」,中國土木水利工程學刊,第十八卷,第二期,265-278頁 ( 2006 )。
[32] 侯佳玟,「最佳化時間延遲補償之擬混合型調諧質量阻尼器於結構振動控制之研究」,國立成功大學土木工程研究所,碩士論文(2007)。
[33] 彭致華,「槓桿式勁度可控質量阻尼器於結構減振之應用與實驗驗證」,國立成功大學土木工程研究所,碩士論文(2010)。
[34] 簡誌德,「最小輸入能量法於半主動質量阻尼器系統之應用研究」,國立成功大學土木工程研究所,碩士論文 ( 2011 )
[35] 葉士瑋,「最小輸入能量法於勁度可控式隔震系統之應用研究」,國立高雄第一科技大學營建工程研究所,碩士論文(2009)。
[36] 林鼎傑,「最小能量控制律於槓桿式勁度可控質量阻尼器系統之實驗驗證」,國立成功大學土木工程研究所,碩士論文(2014)。
[37] 鄭榮杰,「槓桿式半主動摩擦阻尼器於結構減震應用之實驗分析」,國立高雄第一科技大學營建工程系,碩士論文 (2015)
[38] 台達電子工業股份有限公司, 「ASDA-B2系列標準泛用型伺服驅動器應用技術手冊」,(2014)
[39] 許哲崙, 「槓桿式勁度可控質量阻尼器之效能評估與實驗驗證」,國立成功大學土木工程研究所,碩士論文(2016)