簡易檢索 / 詳目顯示

研究生: 郭巧玲
Kuo, Chiao-Ling
論文名稱: 基於知識本體之跨領域地理空間資訊語意互操作框架之發展
The development of an ontology-based semantic interoperability framework for cross-domain geospatial information
指導教授: 洪榮宏
Hong, Jung-Hong
學位類別: 博士
Doctor
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 94
中文關鍵詞: 語意整合知識本體地理資訊系統橋接知識本體變遷偵測
外文關鍵詞: Semantic integration, ontology, Geographic Information System (GIS), bridge ontology, change detection
相關次數: 點閱:220下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地理資料(Geodata)為地理資訊系統之必要元素之一,其為影響地理資訊系統整合結果優劣之關鍵性因素。近年來,隨著測繪技術之精進,各領域能因應領域需求快速且便利地產製各類資料。儘管促成目前大量且豐富之地理資訊環境、帶來多元之地理資訊系統發展,但卻也在地理資訊系統運作和資料整合時,產生異質性之議題。其中,語意異質性為整合過程中最為棘手,亦是最迫切需解決之課題,因為各領域生產資料係基於領域特定觀點,資料保有領域特性及特殊意涵。
    不同領域之地理資料語意整合為本研究之主要課題,本研究主要針對兩大議題進行探討:跨領域知識本體整合和跨領域地理空間資訊語意互操作。對於前者,本研究提出基於知識本體之跨領域地理空間語意整合框架。透過半自動化方法建置橋接知識本體(Bridge ontology),以確實表達領域間之語意關係;後者則以橋接知識本體為基礎,提出地理空間資訊之語意互操作框架,並以該框架發展自動化變遷偵測機制。
    橋接知識本體為知識本體整合之體現,可明確表示不同領域間概念(concept)之語意關聯性。本研究提出基於共同之比較基礎-共同詞彙知識本體(common vocabulary ontology)之半自動化建置橋接知識本體之方法。首先手動以共同詞彙知識本體建立強化之領域知識本體(enriched domain ontology),其中每個概念的語意係以彈性之結構化定義描述,該描述遵循資源描述框架(RDF)之三元組(triple)架構:主語─謂語─賓語。再透過比較共同詞彙的異同性、階層性和值域之演算法,自動化建置兩領域之橋接知識本體。在橋接知識本體中,以5種語意關係(semantic relationships):相等(sem_exact)、被包含(sem_subset)、包含(sem_superset)、重叠(sem_overlap)和互斥(sem_null)等,表示不同領域間,概念之語意異同性。
    為重複利用既有之豐富資料以及實現地理空間資訊語意互操作,本研究發展跨領域地理空間資訊語意互操作框架(semantic interoperability framework for cross-domain geospatial information)。互操作框架考量語意和地理資料之特性而發展,包含6個基本組成:領域知識本體、橋接知識本體、地理資料、規則、處理系統和結果。其中兩項之關鍵性組成為語意關係和規則。規則係根據應用目標與知識,結合資料特性和語意關係而設計;而應用成果則係遵循規則而產生。自動化變遷偵測機制方面,具體歸納3類6種之變遷類型:1. 確定類(confirmed_result category):確定沒變化型(No_change)、確定有變化I型(Change_To Concept)和確定有變化II型(Change_No Concept);2.不確定類(uncertain_change category):不確定I型(Uncertain_I)和不確定II型(Uncertain_II);和3.未處理類(unprocessed category):未處理型(Non_process)。該設計有助於將不同領域地理資料進行語意層級之互操作及達成自動化處理。
      為驗證所提出之互操作框架,本研究以地形資料偵測土地利用資料之變遷。在分別建置地形資料領域知識本體、土地利用領域知識本體和兩者之橋接知識本體後,根據變遷偵測知識,本研究成功地指出土地利用資料之變遷建議,文中並分析地形資料對於土地利用資料之變遷偵測特性與極限。整體而言,本研究證明跨領域資料之語意可被充分釋義、記錄,並可達成語意層級之資料互操作。本框架不僅可應用於變遷偵測,亦可廣泛為跨領域整合應用與互操作之參考。

    Geodata is one of the essential components of the Geographic Information System (GIS). The various characteristics of domain geodata play a key role in assessing the integration results of GIS. With the recently advanced measurement and mapping technology, diverse types of geodata have been produced rapidly by different domains. Despite of such success, heterogeneities remain a common challenge during interoperable processing of GIS applications. Specifically, problems caused by semantic heterogeneity must be solved during integration because geodata with distinguished characteristics and specific meanings are often independently established by different domains from their own perspectives.
    Semantic integration of geodata between different domains is the main focus of this thesis. We aim to address two issues, namely, cross-domain ontology integration and cross-domain geospatial information semantic interoperability. For cross-domain ontology integration, an ontology-based geospatial semantic integration framework is proposed. We develop a semi-automatic approach to establish a bridge ontology that represents the semantics between concepts. For cross-domain geospatial information semantic interoperability, a conceptual semantic interoperability framework based on bridge ontology is designed. We apply this framework for developing an automatic change detection mechanism.
    Bridge ontology is a type of ontology integration being developed for representing the relationships between concepts of two domains. A novel semi-automatic approach based on common vocabulary ontology is proposed to establish bridge ontology between the two selected domains. We start by using common vocabulary ontology to manually establish enriched domain ontology. The semantics of each concept in the enriched domain ontology is presented by an extendable and structural definition that follows Resource Description Framework triple statements, subject-predicate-object. The bridge ontology is then constructed automatically via the proposed algorithm by comparing the term, hierarchy, and value of the structural definition of concepts. In the bridge ontology, five semantic relationships, namely, sem_exact, sem_subset, sem_superset, sem_overlap, and sem_null, are proposed to formally present the semantic differences of concepts between two domains.
    A semantic interoperability framework for cross-domain geospatial information is developed to facilitate the multi-purpose reuse of existing geodata from a semantic interoperability perspective. The framework is composed of six fundamental components involving the consideration of semantics and the properties of geodata: domain ontology, bridge ontology, geodata, rule, processing system and result. Two crucial components are semantic relationships and rules. Rules are application knowledge designed upon the characteristics and semantic relationships of the selected domains of geodata. The application results are also determined by rules. For the automatic change detection mechanism, we conclude three categories and six types of analyzed results, namely, confirmed_result category: No_Change, Change_To Concept and Change_No Concept; uncertain_change category: Uncertain_I and Uncertain_II; and unprocessed category: Non_process. This design enables the automatic and interoperable processing of geodata from two different domains in an integrated fashion.
    To test the proposed framework, topographic map data is used to detect the changes of land use data. After domain ontologies and bridge ontology were both established, we successfully subdivided the whole region into area units of different update suggestions by applying change detection knowledge. The characteristics and limitations of these two data sources are also discussed. The implemented prototype gives a promising success to the semantic interoperability of cross-domain applications. Furthermore, this framework is not restricted to change detection tasks only, any cross-domain integration and interoperability tasks can be accomplished following similar methodologies proposed in this thesis.

    摘要 I Abstract III 致謝 VI Acknowledgements IX List of Figures XII List of Tables XIV List of Acronyms XV Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 6 1.3 Research goal and research questions 8 1.4 Research methods 10 1.5 Organization of the thesis 10 Chapter 2 Literature Review 12 2.1 Semantics interpretation and integration 13 2.1.1 Semantics interpretation 13 2.1.2 Semantic integration 14 2.2 Ontology and Ontology-based integration 14 2.2.1 Ontology definition 14 2.2.2 Ontology types 15 2.2.3 Ontology components, language and development procedure 18 2.2.4 Ontology-based semantic presentation 19 2.2.5 Ontology-based semantic integration 20 2.3 Integration Framework or Models for Semantic integration 23 2.4 Change Detection 24 Chapter 3 Ontology Integration: Bridge Ontology Establishment 27 3.1 Overview of bridge ontology establishment framework 28 3.2 Semantic relationships of bridge ontology 29 3.3 Construction of structural definition 33 3.3.1 Determining the common vocabulary 33 3.3.2 Structural definition 35 3.4 Comparison algorithm 36 3.5 Bridge ontology model 45 Chapter 4 Cross-domain Semantic Interoperability Framework 47 4.1 Semantic interoperability framework 47 4.2 Automatic data change detection mechanism 50 4.2.1 Analysis of change detection factors 51 4.2.2 Change types and rules for change detection 52 Chapter 5 Implementation 57 5.1 Study materials 57 5.2 Bridge ontology of topographic map and land use 59 5.2.1 Common vocabulary extraction 60 5.2.2 Determining semantic relationship between concepts 62 5.2.3 Bridge ontology of topographic map and land use 66 5.3 Change detection experiment results 67 5.4 Discussion and Evaluation 75 5.4.1 Bridge ontology work 75 5.4.2 Change detection work 77 Chapter 6 Conclusions and Future work 79 BIBLIOGRAPHY 83

    1.Abd El-Kawy, O., R?d, J., Ismail, H., and Suliman, A., 2011. Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied Geography, 31(2), 483-494.
    2.Ahlqvist, O., 2008. Extending post-classification change detection using semantic similarity metrics to overcome class heterogeneity: A study of 1992 and 2001 US National Land Cover Database changes. Remote sensing of Environment, 112(3), 1226-1241.
    3.Amrouch, S. and Mostefai, S., 2012, 24-26 March 2012. Survey on the literature of ontology mapping, alignment and merging. Paper presented at the International Conference on Information Technology and e-Services (ICITeS), Sousse, Tunisia. 1-5. IEEE.
    4.Antoniou, G. and van Harmelen, F., 2008. A Semantic Web Primer, (Cooperative Information Systems).
    5.Baglatzi, A. and Kuhn, W., 2013. On the Formulation of Conceptual Spaces for Land Cover Classification Systems. In D. VandenbrouckeSB. Bucher and J. Crompvoets (Eds.), Geographic Information Science at the Heart of Europe Cham, Switzerland: Springer International Publishing. 173-188.
    6.Ballatore, A., Wilson, D. C., and Bertolotto, M., 2013. A survey of volunteered open geo-knowledge bases in the semantic web Quality issues in the management of web information: Springer. 93-120.
    7.Bishr, Y., 1998. Overcoming the Semantic and Other Barriers to GIS Interoperability. International Journal of Geographical Information Science, 12(4), 299-314. doi: 10.1080/136588198241806.
    8.Bouziani, M., Go?ta, K., and He, D.-C., 2010. Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 143-153.
    9.Breitman, K. K., Felicíssimo, C. H., and Casanova, M. A., 2005. CATO-A Lightweight Ontology Alignment Tool. Paper presented at the The 17th Conference on Advanced Information Systems Engineering (CAiSE '05), Porto, Portugal. Springer Berlin Heidelberg.
    10.Bruzzone, L. and Prieto, D. F., 2000. Automatic analysis of the difference image for unsupervised change detection. Geoscience and Remote Sensing, IEEE Transactions on, 38(3), 1171-1182.
    11.Buccella, A., Cechich, A., Gendarmi, D., Lanubile, F., Semeraro, G., and Colagrossi, A., 2010. GeoMergeP: Geographic information integration through enriched ontology matching. New Generation Computing, 28(1), 41-71.
    12.Buccella, A., Cechich, A., Gendarmi, D., Lanubile, F., Semeraro, G., and Colagrossi, A., 2011. Building a global normalized ontology for integrating geographic data sources. Computers & Geosciences, 37(7), 893-916.
    13.Butkiewicz, T., Chang, R., Wartell, Z., and Ribarsky, W., 2008. Visual analysis and semantic exploration of urban LIDAR change detection. Paper presented at the Computer Graphics Forum. 903-910. Wiley Online Library.
    14.Chrisman, N., 2001. Exploring Geographical Information Systems.
    15.Clementini, E., Di Felice, P., and van Oosterom, P., 1993. A small set of formal topological relationships suitable for end-user interaction. Paper presented at the Advances in Spatial Databases. 277-295. Springer.
    16.Cross, V. and Hu, X., 2011, October 24th, 2011. Using semantic similarity in ontology alignment. Paper presented at the The Sixth International Workshop on Ontology Matching(OM-2011), 10th International Semantic Web Conference ISWC-2011, Bonn, Germany. 61-72.
    17.Cruz, I. F., Sunna, W., and Chaudhry, A., 2004. Semi-automatic ontology alignment for geospatial data integration. In M. J. EgenhoferSC. Freksa and H. J. Miller (Eds.), Geographic Information Science: Springer Berlin Heidelberg. Vol. 3234, 51-66.
    18.de Bruijn, J., Ehrig, M., Feier, C., Martin-Recuerda, F., Scharffe, F., and Weiten, M., 2006. Ontology mediation, merging and aligning. Semantic web technologies, 95-113.
    19.Devaraju, A., Kuhn, W., and Renschler, C. S., 2014. A formal model to infer geographic events from sensor observations. International Journal of Geographical Information Science(ahead-of-print), 1-27.
    20.Doan, A., Madhavan, J., Domingos, P., and Halevy, A., 2004. Ontology matching: A machine learning approach. In P. D. S. Staab and P. D. R. Studer (Eds.), Handbook on Ontologies: Springer Berlin Heidelberg. 385-403.
    21.Egenhofer, M. J. and Franzosa, R. D., 1991. Point-set topological spatial relations. International Journal of Geographical Information Science, 5(2), 161-174.
    22.Ehrig, M. and Staab, S., 2004a. QOM-quick ontology mapping The Semantic Web-ISWC 2004: Springer. 683-697.
    23.Ehrig, M. and Staab, S., 2004b. QOM-quick ontology mapping. In S. A. McIlraithSD. Plexousakis and F. v. Harmelen (Eds.), The Semantic Web-ISWC 2004 Hiroshima, Japan: Springer Berlin Heidelberg. Vol. 3298, 683-697.
    24.Ehrig, M. and Sure, Y., 2004. Ontology mapping-an integrated approach. In C. J. BusslerSJ. DaviesSD. Fensel and R. Studer (Eds.), The Semantic Web: Research and Applications: Springer Berlin Heidelberg. Vol. 3053, 76-91.
    25.Euzenat, J. and Shvaiko, P., 2007. Ontology matching: Springer Berlin Heidelberg.
    26.Evangelatos, T. V., 1998. Geomatic Standards, "Tying it together": Inter-Agency Committee on Geomatics and the Canadian Council on Geomatics Canadian Geospatial Data Infrastructure.
    27.Fonseca, F. and C?mara, G., 2009. Geo-Ontologies. In: Marguerite Madden (ed.), Manual of Geographic Information Systems, ASPRS, 6(3), 157-164.
    28.Fonseca, F. T., C?mara, G., and Monteiro, A. M., 2006. A framework for measuring the interoperability of geo-ontologies. Spatial Cognition & Computation, 6(4), 309-331.
    29.Fonseca, F. T., Egenhofer, M. J., Agouris, P., and C?mara, G., 2002. Using ontologies for integrated geographic information systems. Transactions in GIS, 6(3), 231-257.
    30.Frank, A. U. and Raubal, M., 1998, July 11-15, 1998. Specifications for interoperability: formalizing image schemata for geographic space. Paper presented at the In proceedings of 8th International Symposium on Spatial Data Handling, British Columbia,Canada. 331-348. Taylor and Francis.
    31.Fu, G., Jones, C., and Abdelmoty, A., 2005. Ontology-based spatial query expansion in information retrieval. On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, 1466-1482.
    32.G?rdenfors, P., 2004. Conceptual Spaces: The Geometry of Thought. Cambridge, Massachusetts (United States): A Bradford Book, MIT press. 317.
    33.Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., and Schneider, L., 2002. Sweetening ontologies with DOLCE. In A. G?mez-P?rez and V. R. Benjamins (Eds.), Knowledge engineering and knowledge management: Ontologies and the semantic Web: Springer Berlin Heidelberg. Vol. 2473, 166-181.
    34.George, D., 2005. Understanding structural and semantic heterogeneity in the context of database schema integration. Journal of the Department of Computing, UCLAN, 4, 29-44.
    35.Giunchiglia, F. and Shvaiko, P., 2003. Semantic Matching. The Knowledge Engineering Review, 18, 265 - 280. doi: DOI:10.1017/S0269888904000074.
    36.Giunchiglia, F. and Zaihrayeu, I., 2009. Lightweight ontologies. In L. LIU and M. T. ?ZSU (Eds.), Encyclopedia of Database Systems New York, USA: Springer US. 1613-1619.
    37.Goddard, C., 2008. Cross-linguistic semantics (Vol. 102). Amsterdam, The Netherlands: John Benjamins Publishing 376.
    38.Goddard, C. and Wierzbicka, A., 2002. Meaning and universal grammar: theory and empirical findings. Vol. 2 (Vol. 2). Amsterdam, The Netherlands: John Benjamins Publishing.
    39.Gruber, T. R., 1993, August 23, 1993. Toward principles for the design of ontologies used for knowledge sharing. Paper presented at the In Formal Ontology in Conceptual Analysis and Knowledge Representation, Kluwer Academic Publishers, in press. Substantial revision of paper presented at the International Workshop on Formal OntologyCiteseer.
    40.Gruber, T. R., 1995. Toward principles for the design of ontologies used for knowledge sharing? International Journal of Human Computer Studies, 43(5), 907-928.
    41.Guarino, N., 1998. Formal ontology in information systems, Proceedings of the Third International Conference (FOIS-2004) (Vol. 114): IOS Pr., 376.
    42.Haghighi, P. D., Burstein, F., Zaslavsky, A., and Arbon, P., 2013. Development and evaluation of ontology for intelligent decision support in medical emergency management for mass gatherings. Decision Support Systems, 54(2), 1192-1204.
    43.Hastings, J., Magka, D., Batchelor, C. R., Duan, L., Stevens, R., Ennis, M., and Steinbeck, C., 2012. Structure-based classification and ontology in chemistry. J. Cheminformatics, 4, 8.
    44.Heer, T., Retkowitz, D., and Kraft, B., 2009. Tool Support for the Integration of Light-Weight Ontologies. In J. Filipe and J. Cordeiro (Eds.), Enterprise Information Systems: Springer Berlin Heidelberg. Vol. 19, 175-187.
    45.Henriksson, R., Kauppinen, T., and Hyvonen, E., 2008. Core geographical concepts: Case finnish geo-ontology. 57-60. ACM.
    46.Huang, C.-R. and Chou, Y.-M., 2015. Multilingual conceptual access to lexicon based on shared orthography: An ontology-driven study of Chinese and Japanese Language Production, Cognition, and the Lexicon: Springer. 135-150.
    47.Iglesias, J. and Lehmann, J., 2011. Towards integrating fuzzy logic capabilities into an ontology-based inductive logic programming framework. Paper presented at the Intelligent Systems Design and Applications (ISDA), 2011 11th International Conference on. 1323-1328. IEEE.
    48.Im, J., Jensen, J., and Tullis, J., 2008. Object?based change detection using correlation image analysis and image segmentation. International journal of remote sensing, 29(2), 399-423.
    49.Jansen, L., 2008. Categories: The top-level ontology. In K. Munn and B. Smith (Eds.), Applied ontology: An introduction Heusenstamm, Germany: Walter de Gruyter. 173-196.
    50.Jasper, R. and Uschold, M., 1999. A framework for understanding and classifying ontology applicationsProceedings of the IJCAI-99 Ontology Workshop.
    51.Johnson, M., 1987. The body in the mind: The bodily basis of meaning, imagination, and reason. Chicago, United States of America: University of Chicago Press. 272.
    52.Jones, C., Abdelmoty, A., Finch, D., Fu, G., and Vaid, S., 2004. The spirit spatial search engine: Architecture, ontologies and spatial indexing. Geographic Information Science, 125-139.
    53.Kara, S., Alan, ?., Sabuncu, O., Akp?nar, S., Cicekli, N. K., and Alpaslan, F. N., 2012. An ontology-based retrieval system using semantic indexing. Information Systems, 37(4), 294-305.
    54.Kavouras, M. and Kokla, M., 2007. Theories of geographic concepts: ontological approaches to semantic integration. Florida, United States of America: CRC Press.
    55.Kavouras, M., Kokla, M., and Tomai, E., 2005. Comparing categories among geographic ontologies. Computers & Geosciences, 31(2), 145-154.
    56.Keet, C. M. (2004). Aspects of ontology integration, Literature research & background information for the PhD proposal entitled:Bottom-up development of ontologies and ontology integration in the subject domain of ecology. School of Computing, Napier University, Edinburgh, Scotland.
    57.Kemper, G., Celikoyan, M., Altan, O., Toz, G., Lavalle, C., and Demicelli, L., 2004. RS-techniques for Land use change detection-Case study of Istanbul. XX. Uluslararas? Fotogrametri ve Uzaktan Alg?lama Birli?i Kongresi, 12-23.
    58.Kim, J. and Chung, K.-Y., 2014. Ontology-based healthcare context information model to implement ubiquitous environment. Multimedia Tools and Applications, 71(2), 873-888.
    59.Klien, E., Lutz, M., and Kuhn, W., 2006. Ontology-based discovery of geographic information services-An application in disaster management. Computers, Environment and Urban Systems, 30(1), 102-123.
    60.Klien, E. M. (2008). Semantic annotation of geographic information. Phd thesis, Institute for Geoinformatics, University of Muenster. Muenster, Germany.
    61.Klyne, G. and Carroll, J. J., 2004. Resource description framework (RDF): Concepts and abstract syntax. Changes, 10(February), 1-20.
    62.Kokla, M. and Kavouras, M., 2005. Semantic information in geo-ontologies: extraction, comparison, and reconciliation. In S. Spaccapietra and E. Zim?nyi (Eds.), Journal on Data Semantics III: Springer Berlin Heidelberg. Vol. 3534, 125-142.
    63.Kontopoulos, E., Berberidis, C., Dergiades, T., and Bassiliades, N., 2013. Ontology-based sentiment analysis of twitter posts. Expert Systems with Applications, 40(10), 4065-4074.
    64.Kresse, W. and Fadaie, K., 2004. ISO standards for geographic information: Springer Verlag.
    65.Kuhn, W., 2003. Semantic reference systems. International Journal of Geographical Information Science, 17(5), 405-409.
    66.Kuhn, W., 2005. Geospatial semantics: Why, of what, and how? Lecture Notes in Computer Science, 3534, 1-24.
    67.Kuhn, W. and Raubal, M., 2003, April 24-26, 2003. Implementing semantic reference systems. Paper presented at the The 6th AGILE International Conference on Geographic Information Science, Lyon, France. 63-72.
    68.Lehnert, W. G. and Ringle, M. H., 2014. Strategies for natural language processing. New York: Psychology Press.
    69.Leung, N. K., Kang, S. H., Lau, S. K., and Fan, J., 2009. Ontology matching techniques: a 3-tier classification framework.
    70.Liaw, S.-T., Rahimi, A., Ray, P., Taggart, J., Dennis, S., de Lusignan, S., . . . Talaei-Khoei, A., 2013. Towards an ontology for data quality in integrated chronic disease management: a realist review of the literature. International journal of medical informatics, 82(1), 10-24.
    71.Lieberman, J., Singh, R., and Goad, C., 2007. W3C Geospatial Ontologies. Incubator group report, W3C.
    72.Lowe, E. J., 2003. Recent advances in metaphysics. Facta philosophica, 5, 3-24.
    73.Lu, D., Mausel, P., Brond?zio, E., and Moran, E., 2004. Change detection techniques. International journal of remote sensing, 25(12), 2365-2401. doi: 10.1080/0143116031000139863.
    74.Malinowski, B., Ogden, C. K., and Richards, I. A., 1923. The meaning of meaning: New York: Harcourt & Brace,[1923].
    75.Manning, C. D. and Sch?tze, H., 1999. Foundations of statistical natural language processing. Cambridge, Massachusetts, USA: MIT press.
    76.Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., . . . Payne, T. R. (2004). OWL-S: Semantic markup for web services, from http://www.ai.sri.com/~daml/services/owl-s/1.2/overview/
    77.Mascardi, V., Cord?, V., and Rosso, P., 2007, September 24-25, 2007. A Comparison of Upper Ontologies. Paper presented at the {WOA} 2007: Dagli Oggetti agli Agenti. 8th AI*IA/TABOO Joint Workshop "From Objects to Agents": Agents and Industry: Technological Applications of Software Agents, Genova Italy. 55-64. Seneca Edizioni Torino.
    78.Mascardi, V., Locoro, A., and Rosso, P., 2010. Automatic ontology matching via upper ontologies: A systematic evaluation. Knowledge and Data Engineering, IEEE Transactions on, 22(5), 609-623.
    79.Matikainen, L., Hyypp?, J., Ahokas, E., Markelin, L., and Kaartinen, H., 2010. Automatic detection of buildings and changes in buildings for updating of maps. Remote Sensing, 2(5), 1217-1248.
    80.McGuinness, D. L. and Van Harmelen, F., 2004. OWL web ontology language overview. W3C recommendation, 10, 2004-2003.
    81.Mizoguchi, R. and Ikeda, M., 1998. Towards ontology engineering. Journal-Japanese Society for Artificial Intelligence, 13, 9-10.
    82.Montenegro, N., Gomes, J. C., Urbano, P., and Duarte, J. P., 2012. A land use planning ontology: Lbcs. Future Internet, 4(1), 65-82.
    83.Noy, N. F., 2004. Semantic integration: a survey of ontology-based approaches. ACM Sigmod Record, 33(4), 65-70.
    84.Noy, N. F. and McGuinness, D. L., 2001. Ontology development 101: A guide to creating your first ontology. Stanford, California, United States of America: Stanford knowledge systems laboratory technical report KSL-01-05 and Stanford medical informatics technical report SMI-2001-0880.
    85.Ogden, C. K., Richards, I. A., Malinowski, B., and Crookshank, F. G., 1949. The meaning of meaning: Routledge & Kegan Paul London.
    86.Pinto, H. S. and Martins, J. P., 2001, October 21 - 23, 2001 A methodology for ontology integration. Paper presented at the K-CAP'01 Proceedings of the 1st international conference on Knowledge capture, Victoria, Canada. 131-138. ACM.
    87.Pires, C. E. S., Santiago, R. M. L., Salgado, A. C., Kedad, Z., and Bouzeghoub, M., 2012. Ontology-based Clustering in a Peer Data Management System. International Journal of Distributed Systems and Technologies (IJDST), 3(2), 1-21.
    88.Pulido, J., Ruiz, M., Herrera, R., Cabello, E., Legrand, S., and Elliman, D., 2006. Ontology languages for the semantic web: A never completely updated review. Knowledge-Based Systems, 19(7), 489-497.
    89.Pundt, H. and Bishr, Y., 2002. Domain ontologies for data sharing-an example from environmental monitoring using field GIS. Computers & Geosciences, 28(1), 95-102.
    90.Radke, R. J., Andra, S., Al-Kofahi, O., and Roysam, B., 2005. Image change detection algorithms: a systematic survey. Image Processing, IEEE Transactions on, 14(3), 294-307.
    91.S?nchez, D. and Batet, M., 2012. A new model to compute the information content of concepts from taxonomic knowledge. International Journal on Semantic Web and Information Systems (IJSWIS), 8(2), 34-50.
    92.Shalaby, A. and Tateishi, R., 2007. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27(1), 28-41. doi: 10.1016/j.apgeog.2006.09.004.
    93.Shvaiko, P. and Euzenat, J., 2008. Ten challenges for ontology matching. In R. Meersman and Z. Tari (Eds.), On the Move to Meaningful Internet Systems: OTM 2008: Springer Berlin Heidelberg. 1164-1182.
    94.Shvaiko, P. and Euzenat, J., 2012. Ontology matching: state of the art and future challenges.
    95.Stevens, R., Goble, C. A., and Bechhofer, S., 2000. Ontology-based knowledge representation for bioinformatics. Briefings in bioinformatics, 1(4), 398-414.
    96.Stevens, S. S., 1946. On the theory of scales of measurement. Science, New Series, 103, 677-680. doi: 10.2307/1671815
    97.Stoimenov, L., Stanimirovic, A., and Djordjevic-Kajan, S., 2006, 26th March 2009. Discovering mappings between ontologies in semantic integration process. Paper presented at the The 9th AGILE Conference on Geographic Information Science, Visegr?d, Hungary. 213-219.
    98.Studer, R., Benjamins, V. R., and Fensel, D., 1998. Knowledge engineering: principles and methods. Data & Knowledge Engineering, 25(1-2), 161-197.
    99.Subhashini, R. and Akilandeswari, J., 2011. A SURVEY ON ONTOLOGY CONSTRUCTION METHODOLOGIES.
    100.Sun, H., Fan, W., Shen, W., and Xiao, T., 2012. Ontology-based interoperation model of collaborative product development. Journal of Network and Computer applications, 35(1), 132-144.
    101.Tanasescu, V., Gugliotta, A., Domingue, J., Davies, R., Gutiérrez-Villarías, L., Rowlatt, M., Stinčić, S., 2006. A semantic web services GIS based emergency management application The Semantic Web-ISWC 2006: Springer. 959-966.
    102.Tian, J., Cui, S., and Reinartz, P., 2014. Building change detection based on satellite stereo imagery and digital surface models. Geoscience and Remote Sensing, IEEE Transactions on, 52(1), 406-417.
    103.Torres, M., Quintero, R., Levachkine, S., Moreno, M., and Guzman, G., 2009. Geospatial Information Integration Approach Based on Geographic Context Ontologies. Information Fusion and Geographic Information Systems, 177-191.
    104.Uitermark, H., van Oosterom, P., Mars, N., and Molenaar, M., 1999. Ontology-based geographic data set integration. 60-78. Springer.
    105.Uitermark, H. T., van Oosterom, P. J. M., Mars, N. J. I., and Molenaar, M., 2005. Ontology-based integration of topographic data sets. International Journal of Applied Earth Observation and Geoinformation, 7(2), 97-106.
    106.Uschold, M. and Gruninger, M., 1996. Ontologies: Principles, methods and applications. The Knowledge Engineering Review, 11(2), 93-136.
    107.Uschold, M. and Gruninger, M., 2004. Ontologies and semantics for seamless connectivity. ACM Sigmod Record, 33(4), 58-64.
    108.Van Brakel, J., 2012. Substances: the ontology of chemistry. Philosophy of Chemistry, 6, 191.
    109.Van Heijst, G., Schreiber, A. T., and Wielinga, B. J., 1997. Using explicit ontologies in KBS development. International Journal of Human Computer Studies, 46, 183-292.
    110.Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., and H?bner, S., 2001. Ontology-based integration of information-a survey of existing approaches. Paper presented at the IJCAI-01 workshop: ontologies and information sharing. 108-117. Citeseer.
    111.Walter, V., 2004. Object-based classification of remote sensing data for change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3-4), 225-238. doi: 10.1016/j.isprsjprs.2003.09.007.
    112.Wang, Y., Daib, J., Shenga, J., Zhoua, K., and Gonga, J., 2007. Geo-ontology design and its logic reasoning. 675309-675301.
    113.Weng, Q., 2002. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of environmental management, 64(3), 273-284.
    114.Wierzbicka, A., 1996. Semantics: Primes and Universals. New York, United States: Oxford University Press.
    115.Wright, C. K. and Wimberly, M. C., 2013. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proceedings of the National Academy of Sciences, 110(10), 4134-4139.
    116.Xu, B., Wang, P., Lu, J., Li, Y., and Kang, D., 2004, 18-20 Nov. 2004. Bridge ontology and its role in semantic annotation. Paper presented at the Proceedings International Conference on Cyberworlds, Tokyo, Japan. 329-334. IEEE.
    117.Yin, P., Wang, H., and Guo, K., 2013. Feature-opinion pair identification of product reviews in Chinese: a domain ontology modeling method. New Review of Hypermedia and Multimedia, 19(1), 3-24.
    118.Zeshan, F. and Mohamad, R., 2012. Medical ontology in the dynamic healthcare environment. Procedia Computer Science, 10, 340-348.
    119.Zhang, C., 2004. Towards an operational system for automated updating of road databases by integration of imagery and geodata. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3-4), 166-186. doi: 10.1016/j.isprsjprs.2003.09.004.
    120.Zhang, Q. and Couloigner, I., 2004. A framework for road change detection and map updating. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35, 720-734.

    下載圖示 校內:2016-12-30公開
    校外:2016-12-30公開
    QR CODE