簡易檢索 / 詳目顯示

研究生: 林忠幼
Lin, Jhong-You
論文名稱: 以螯合性聚乙烯胺化碳材製備燃料電池觸媒層
Preparation of Pt Catalysts for Direct Methanol Fuel Cells through chelating Polyethyleniminated-Carbon
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 90
中文關鍵詞: 鉑系奈米粒子改質碳材觸媒層直接甲醇燃料電池
外文關鍵詞: nanoparticle, fuel cells, functionalized carbon, catalyst, platinum
相關次數: 點閱:69下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以聚乙烯胺高分子 (Polyethylenimine) 改質經過酸化處理之碳材 (Degussa Carbon) 作為具有金屬螯合性之新穎合成碳材,以化學還原法於水相製備鉑系奈米粒子應用於燃料電池觸媒層。探討不同的金屬覆荷量 (5, 10, 20, 40 and 60 wt%) 對鉑系奈米粒子型態上的影響,以及其對氧化甲醇和單電池測試的效果。穿透式電子顯微鏡 (TEM) 的結果顯示用此合成碳材所製備之觸媒不會隨著覆荷量增高而使鉑奈米粒徑增大 (約3 — 4nm) 且粒子分佈相當均勻。熱處理的目的主要是使高分子裂解而達到活化觸媒的效果,結果顯示其對粒子的型態會隨著裂解時間 (0, 5, 10 and 15 小時) 增加而聚集變大。由 XRD 可知鉑系奈米粒子皆呈現面心立方晶格 (face-centered cubic, fcc) 的結構。另外由繞射峰之半高寬可以約略估計晶界 (grain boundary) 的大小,其結果與 TEM 的觀察相近。XPS 結果顯示胺基與鉑具有鍵結的特徵峰、所有觸媒中白金大部分皆以 Pt0 的型式存在,且在熱處理的過程乙烯胺基達到完全裂解效果。從TGA計算聚乙稀高分子的比例與逆滴定的結果吻合、且求得理論覆荷量 20%、40%、60% 於真實中的覆荷量為 16.1%、25.8%、36.1%。以電化學吸附面積 (EAS areas) 評估覆荷量20%之白金觸媒在不同熱處理時間中以熱處理10小時最為優越,與商用觸媒(E-TEK) 比較可以得到類似的電化學活性表面積。另外在不同覆荷量 (20%、40%、60%)及商用觸媒 (E-TEK) 的電化學吸附面積中以 36.1% 觸媒最卓越並且為E-TEK觸媒兩倍以上。循環伏安法 (cyclic voltammetry, CV) 來評估觸媒對甲醇氧化的活性。高覆荷量白金觸媒活性較低覆荷量觸媒來的高且都優於商用觸媒 (E-TEK) 。實際使用於DMFC單電池測試,結果顯示觸媒在不同溫度 (30oC、60 oC、90 oC) 隨著溫度的提升而有更高的效能。且覆荷量由 16.4% 至 36.1% 之效能均優於觸媒 (E-TEK),由其最大覆荷量 (36.1%) 之白金觸媒在90oC時可以得到比商用觸媒 (E-TEK) 高兩倍以上的功率 (84 mW),且開環電壓可以達到0.793 伏特。

    A chelating type of carbon with a hydrophile of polyethylenimine (C-(EI)3), was synthesized by amidation of acyl chloride-functionalized carbon with tetraethylentriamine and was used as a stabilizer to prepare Pt colloid, which is then calcinated in situ to prepare carbon-supported Pt nanocatalyst. After Pt was deposited on carbon, the increasing loading percent of Pt from 5 to 60 wt.% increases the quantity of Pt particles of about 3.5 nm rather than increases the particle size. As being calcinated, the particle size grows up gradually from 3.6 nm to 5.3 nm for calcination time of 15h. X-ray photoelectron spectroscopy revealed that metallic Pt0 (84%) predominated the Pt species in the heat-treated catalyst, which is more than the commercial E-TEK catalyst. The stabilizing ability of C-(EI)3 to Pt before and after calcination can be interpreted by the existence of binding energy between Pt and amine nitrogen. A real Pt loading percent of 16.4, 25.8 and 36.1 wt% is obtained from the thermogram analysis with nominal loading percent of 20,40 and 60 wt%. The electrochemical active surface (EAS) area of the Pt/C catalyst with real loading percent of 36.1 wt.% (192.8 m2/g Pt) is more than twice as high as the E-TEK Pt/C catalyst (91.5 m2/g Pt), and the peak current density for methanol oxidation (0.416 A/mg Pt) is also remarkably much higher than the later (0.172 A/mg Pt). Moreover, the power density of the single DMFC with metal loading of 36.1 wt.% (84 mW cm-2) was found to be much bigger than the E-TEK Pt/C (43.5 mW cm-2) at 90 oC and the OCV reached 0.793V.

    Abstract (English)……… …………i Abstract (Chinese)…………… ……… ii Acknowledgement ………… ………iii List of Tables ……………… …… iv List of Schemes…… ………… v List of Figures…… ……… vi Chapter 1.Introduction… ……1 1.1 Concept of FuelCells……… ………1 1.2 Fuel Cell Types…………… ………2 1.3 Benefits of Fuel Cells……… ……5 1.4 Fuel Cell BasicsApplication… ……6 Chapter 2.Theorems… ………8 2.1 Direct Methanol Fuel Cells (DMFCs …8 2.1.1 Fundamental Aspects……… ……………8 2.1.2 Catalyst…… …… 10 2.1.3 Solid Polymer Electrolyte: Proton Exchange Membrane…… …… 11 2.1.4 Catalyst support…………… …… 13 2.1.5 Improvements of Materials for DMFCs……… ……… 14 2.1.6 Polarization behavior……… ……15 2.2 Theorems…… ……19 2.2.1 Transmission Electron Microscopy, TEM…………… ……19 2.2.2 X-ray diffraction, XRD……………… ……21 2.2.3 Cyclic Voltammeter,CV…… …23 2.2.4 Electrochemical Active Surface Area, EAS area…………… ……30 Chapter 3.Experimental Section……… ……36 3.1 Materials……… ………36 3.2 Sample Preparation…… ………36 3.2.1 Pretreatment of Activated Carbon……… ………36 3.2.2 Syntheses of Functionalized Chelate Carbon………… ……37 3.2.3 Syntheses of Pt Nanocatalyst…… ……38 3.2.4 Preparation of Working Electrode………… ……38 3.2.5 Preparation of Membrane Electrode Assembly (MEA)…………… ………39 3.3 Characterizations… ……40 Chapter 4. Results andDiscussion…… ……45 4.1 Qualitative analysis of modified surface on active carbon………… ……46 4.2 Morphology of Pt deposition onto carbon……… ……47 4.3 The Study of X-ray Diffraction (XRD)………………… ……49 4.4 Effect of Thermal Activation Time…… ……51 4.5 Surface Analysis by X-ray Photoelectron Spectroscopy (XPS)……… ……54 4.6 Effect of loading percent on Pt catalysts after thermal activation……… …………62 4.6.1 Morphology of different loading amounts Pt/C catalysts……… ………62 4.6.2 Real Loading Percents of Pt/ C by TG analysis………… …64 4.7 Electrochemical Analysis…………… …67 4.7.1 Electrochemical Behavior of Pt/ C-(EI)3 Catalysts with Different Calcination Times……… …67 4.7.2 Electrochemical Behavior of Pt/C Catalysts with Different Loading Percents………… ……… 70 4.8 Single Cell Performance…… ……74 Chapter 5. General Conclusion……… ……79 References andNotes……… ……82 Autobiography… …90

    (1) James, L.; Andrew D. Fuel Cell Explained, John Weiley, England, 2003
    (2) G.J.K. Acres, Journal of Power Sources, 100, 60 (2001).
    (3) Bolmen, L. J.; M. J., and Megerwa M. N., Fuel Cell Systems,
    Plenum Press, New York and London, 1993.
    (4) Acres G. J. K., Frost J. G., Hards G. A., Potter R. J., Ralph T. R.,
    Thompsett D., Burstein G. T., and Hutchings G. J., Electrocatalysts
    for Fuel Cells, Catalysis Today, Vol. 38, p. 393, 1997.
    (5) Stonehart O., J. Apl. Electrochem., Vol. 22, p. 995, 1992.
    (6)Apleby A. J. and Folkes F. R., Fuel Cell Handbook, Van Nostrand
    Reinhold, New York, 1989.
    (7) Malhotra S. and Datta R.,, J. Electrochem. Soc, Vol. 144, L-23, 1997.
    (8) Bockris, J. O`M.; Srinivasan, S.; Fuel Cells : Their Electrochemistry, McGraw-Hill Book Company, New York, 1969.
    (9) Parsons, R.; Van der Noot, T. J. Electroanal. Chem. 1988, 257, 9.
    (10) Bagotzky, V. S.; Vassiliev, Yu. B.; Khazova O. A. J. Electroanal. Chem. 1977, 81, 229.
    (11) (a) Neergat, M.; Leveratto, D.; Stimming, U. Fuel Cells 2002, 2, 25. (b) Sarma, L. S.; Lin, T. D.; Tsai, Y. W.; Chen, J. M.; Huang, B. J. J. Power Sources 2005, 139, 44. (c) Xue, X.; Lu, T.; Liu, C.; Xing, W. Chem. Comm. 2005, 1601.
    (12) (a) Manzo-Robledo, A.; Boucher, A. C.; Pastor, E.; Alonso-Vante, N. Fuel Cells 2002, 2, 109. (b) Jiang, L.; Sun, G.; Zhou, Z.; Zhou, W.; Xin, Q. Catal. Today 2004, 93-95, 665. (c) Lamy, C.; Rousseau, S.; Belgsir, E. M.; Coutanceau, C.; Léger, J. M. Electrochim. Acta 2004, 49, 3901. (d) Rivera-Casado, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vázquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruña, H. D. J. Am. Chem. Soc. 2004, 126, 4043.
    (13) Gurau, B.; Viswanathan, R.; Liu, R.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S.; Reddington, E.; Sapienza, A.; Chan, B. C.; Mallouk, T. E.; Sarangapani, S. J. Phys. Chem. B 1998, 102, 9997.
    (14) (a) Gokagac, G.; Léger, J. M.; Hahn, F.; Lamy, C. J. Electrochem. Soc. 2001, 4, 174. (b) Samjeské, G.; Wang, H.; Löffler, T.; Baltruschat, H. Electrochim. Acta 2002, 47, 3681.
    (15) (a) Yu, P.; Pemberton, M.; Plasse, P. J. Power Sources 2005, 144, 11. (b) Neto, A. O.; Vasconcelos, T. R. R.; Da Silva, R. W. R. V.; Linardi, M.; Spinacé, E. V. J. Appl. Electrochem. 2005, 35, 193. (c) Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. J. Electroanal. Chem. 2005, 580, 145. (d) Xiong, L.; Kannan, A. M.; Manthiram, A. Electrochem. Commun. 2002, 4, 898.
    (16) (a) Shukla, A. K.; Neergat, M.; Bera, P.; Jayaram, V.; Hegde, M. S. J. Electroanal. Chem. 2001, 504, 111. (b) Deivaraj, T. C.; Chen, W.; Lee, J. Y. J. Mater. Chem. 2003, 13, 2555.
    (17) Chan, K. Y.; Ding, J.; Ren, J.; Cheng, S.; Tsang, K. Y. J. Mater. Chem. 2004, 14, 505.
    (18) Bönnemann, H.; Richards, R. M. Eur. J. Inorg. Chem. 2001, 2455.
    (19) (a) Curtis, A. C.; Duff, D. G.; Edwards, P. P.; Jefferson, D. A.; Johnson, B. F. G.; Kirkland, A. I.; Wallace, A. S. J. Phys. Chem. 1988, 92, 2270. (b) Wang, Y.; Ren, J.; Deng, K.; Gui, L.; Tang, Y. Chem. Mater. 2000, 12, 1622.
    (20) (a) Shen, P. K.; Tian, Z. Electrochim. Acta 2004, 49, 3107. (b) Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun and Q. Xin, Chem. Commun. 2003, 394.
    (21) Zhang, X.; Chan, K. Y. Chem. Mater. 2003, 15, 451.
    (22) Butler, G. B.; Oriscoll, K. F.; Wilkes, G. L. JMS-Rev. Macromol. Chem. Phys. 1994, C34(3), 325-373.
    (23) (a) Che, G.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Nature 1998, 393, 346. (b) Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C.; Yan, Y. Nano Lett. 2003, 4, 345. (c) Matsumoto, T.; Komatsu, T.; Arai, K.; Yamazaki, T.; Kijima, M.; Shimizu, Y.; Nakamura, J. Chem. Comm. 2004, 840. (d) Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q. J. Phys. Chem. B 2003, 107, 6292. (e) Liu, Z.; Lin, X.; Lee, J. Y.; Zhang, W.; Han, M.; Gan, L. M. Langmuir 2002, 18, 4054. (f) Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J. Phys. Chem. B 2002, 106, 760. (g) Han, K. I.; Lee, J. S.; Park, S. O.; Lee, S. W.; Park, Y. W.; Kim, H. Electrochim. Acta 2004, 50, 787. (h) Sun, C. L.; Chen, L. C.; Su, M. C.; Hong, L. S.; Chyan, O.; Hsu, C. Y.; Chen, K. H.; Chang, T. F.; Chang, L. Chem. Mater. 2005, 17, 3749. (i) Tang, H.; Chen, J.; Nie, L.; Liu, D.; Deng, W.; Kuang, Y.; Yao, S. J. Colloid Interface Sci. 2004, 269, 26.
    (24) Kim, C.; Kim, Y. J.; Kim, Y. A. J. Appl. Phys., Vol. 96, No. 10, 15 Novemver 2004
    (25) Li, W.; Wang, X. J. Phys. Chem. B. 2006, 110, 15353-15358.
    (26) (a) Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743. (b) Toebes, M. L.; van der Lee, M. K.; Tang, L. M.; Huis in ‘t Veld, M. H.; Bitter, J. H.; Jos van Dillen, A.; de Jong, K. P. J. Phys. Chem. B. 2004, 108, 11611.
    (27) (a) Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G. J. Am. Chem. Soc. 2002, 124, 9382. (b) Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169. (c) Raghuveer, V.; Manthiram, A. J. Electrochem. Soc. 2005, 152, A1504.
    (28) (a) Hamnett, A. Catal. Today 1997, 38, 445. (b) Eikerling, M.; Loselevich, A. S.; Kornyshev Fuel Cells 2004, 4, 131. (c) Marković N. M.; Schmidt, T. J.; Stamenković, V.; Ross, P. N. Fuel Cells 2001, 1, 105.
    (29) 陳力俊, 材料電子顯微鏡學,國科會精儀中心,1994
    (30) B. D.Cullity, Elements of X-RAY Diffraction, 2nd edition, Addison-Wesley, 1978.
    (31) Wang, J.; Analytical Electrochemistry, 2nd ed., Wiley-VCH, New York, 2000.
    (32) Gosser, D. K.; Cyclic Voltammetry : simulation and analysis of reaction mechanism, VCH Publisher Inc., 1993.
    (33) Bond, A. M.; Broadening Electrochemical Horizons : Principles and Illustration of Voltammetric and Related Techniques, Oxford University Press Inc., New York, 2002.
    (34) Bockris, J. O’M.; Reddy, A. K. N.; Gamboa-Aldeco, M.; Modern Electrochemistry 2nd ed., Kluwer Academic / Plenum Publishers, New York, 2000.
    (35) Bard, A. J.; Faulkner, L. R.; Electrochemical Methods : Fundamentals and Applications, 2nd ed., John Wiley & Sons Inc., 2001.
    (36) Bagotzky, V. S.; Fundamentals of Electrochemistry, Plenum Press, New York, 1993.
    (37) Salgado, J. R. C.; Antolini, E.; Gonzalez, E. R. J. Power Sources 2004, 138, 56.
    (38) Christensen, P. A.; Hamnett, A.; Techniques and Mechanisms in Electrochemistry, Chapman & Hall, 1994
    (39) Nicholson, R. S.; Shain, I. Anal. Chem. 1964, 36, 706.
    (40) (a) Vielstich, W.; Lamm, A.; Gasteiger, H. A.; Handbook of Fuel Cells : Fundamentals Technology and Applications, John Wiley & Sons Inc., 2003. (b) Sawyer, D. T.; Sobkowiak, A.; Roberts, J. L. Electrochemistry for Chemists, John Wiley & Sons Inc., 1995.
    (41) (a) Kinoshita, K.; Ferrier, D. R.; Stonehart, P. Electrochim. Acta 1978, 23, 45. (b) Kinoshita, K.; Lundquist, J.; Stonehart, P. J. Catal. 1973, 31, 325.
    (42) Brunnauer, S.; Emmet, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309.
    (43) Trasatti, S.; Petrii, O. A. Pure Appl. Chem. 1991, 63, 735.
    (44) Will, F. J. Electrochem. Soc. 1965, 112, 451.
    (45) (a) Gilman, S. J. Phys. Chem. 1962, 67, 78. (b) Gilman, S.; in Electroanalytical Chemistry – A Series of Advances, A. J. Bard (Ed), Marcel Dekker, New York, Vol. 2, p. 112, 1967.
    (46) Breiter, M.; Kammermeier, H.; Knorr, C. A. Elektrochem. 1956, 60, 37.
    (47) Woods, R. J. Electroanal. Chem. 1974, 49, 217.
    (48) Gilman, S. J. Electroanal. Chem. 1964, 7, 382.
    (49) Li, J.; Ma, L.; Lu, C. et al. Ind. Eng. Chem. Res. 2005, 44, 5478.
    (50) Liu, Z.; Ling, X. Y.; Lee, J. Y.; Su, X.; Gan, L. M. J. Mater. Chem.
    2003, 13, 3049.
    (51) Kuo, P.L.; Chen W.F.; Huang, H. Y.; Chang I. C. and Dai, S. A. J. Phys.Chem. B 2006, 110, 3071-3077
    (52) Kuo, P. L.; Chen, W. F. J. Phys. Chem. B 2003, 107, 11267.
    (53) Kuo, P. L.; Liang, W. J.; Wang, F. Y. J. Polym. Sci. Pol. Chem. 2003, 41, 1360.
    (54) Manna, A.; Imae, T.; Aoi, K.; Okada, M.; Yogo, T. Chem. Mater. 2001, 13, 1674.
    (55) Kuo, P. L.; Ghosh, S. K.; Liang, W. J.; Hsieh, Y. T. J. Polym. Sci. Pol. Chem. 2001, 39, 3018.
    (56) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem. Res. 2001, 34, 3, 181.
    (57) Sawyer, L. C.; Grubb, D. T. Polymer Microscopy, 2nd ed.; Chapman & Hall: New York, 1996.
    (58) Cullity, B. D., Elements of X-Ray Diffraction (3rd edition), Addison-Wesley Publishing Co., Inc., Reading, MA, 1956.
    (59) Zhou, Z.; Wang, S.; Zhou, W.; Jiang, L.; Wang, G.; Sun, G.; Zhou, B.; Xin, Q. Phys. Chem. Chem. Phys. 2003, 5, 5485.
    (60) Liu, Z.; Ling, X. Y.; Su, X.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234.
    (61) Lu, Q.; Yang, B.; Zhuang, L.; Lu, J. J. Phys. Chem. B 2005, 109, 1715.
    (62) Giordano, N.; Passalacqua, E.; Pino, L.; Aricò, A. S.; Antonucci, V.; Vivaldi, M.; Kinoshita, K. Electrochim. Acta 1991, 36, 1979.
    (63) Peuckert, M.; Yoneda, T.; Dalla Betta, R. A.; Boudart, M. J. Electrochem. Soc. 1986, 113, 944.
    (64) Kim, T.; Takahashi, M.; Nagai, M.; Kobayashi, K. Electrochim. Acta 2004, 50, 813.
    (65) Wang, X.; Hsing, I. M. Electrochim. Acta 2002, 47, 2981.
    (66) Moulder, J. F.; Stick, W. F.; Sobol, P. E.; Bomben, K. D. In; Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer: Eden Prairie, MN, 1992.
    (67) Woods, R. J. Electroanal. Chem. 1976, 9, 1.
    (68) (a) Ye, H.; Crooks, M. J. Am. Chem. Soc. 2005, 127, 4930. (b) Fu, X.; Wang, Y.; Wu, N.; Gui, L.; Tang, Y. J. Colloid Interface Sci. 2001, 243, 326.
    (69) Luo, J.; Maye, M. M.; Han, L.; Kariuki, N. N.; Jones, V. W.; Lin, Y.; Engelhard, M. H.; Zhong, C. J. Langmuir 2004, 20, 4254.
    (70) Aricò, A. S.; Creti, P.; Kim, H.; Mantegna, R.; Giordano, N.; Antonucci, V. J Electrochem. Soc. 1996, 143, 3950.
    (71) (a) Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vilà, N. Langmuir 2004, 20, 8243. (b) Hecq, A.; Delrue, J. P.; Hecq, M.; Robert, T. J. Mater. Sci. 1981, 16, 407.
    (72) (a) Sharma, J.; Chaki, N. K.; Mandale, A. B.; Pasricha, R.; Vijayamohanan, K. J. Colloid Interface Sci. 2004, 272, 145. (b) Sharma, J.; Mahima, S.; Kakade, A. B.; Pasricha, R.; Mandale, A. B.; Vijayamohanan, K. J. Phys. Chem. B 2004, 108, 13280. (c) Schmidt, T. J.; Noeske, M.; Gasteiger, A. H.; Behm, R. J.; Britz, P.; Brijoux, W.; Bönnemann, H. Langmuir 1997, 13, 2591.
    (73) Haimov, A.; Cohen, H.; Neumann, R. J. Am. Chem. Soc. 2004, 126, 11762.
    (74) (a) Aricò, A. S.; Poltarzewski, Z.; Kim, H.; Morana, A.; Giordano, N.; Antonucci, V. J. Power Sources 1995, 55, 159. (b) Aricò, A. S.; Shukla, A. K.; Kim, H.; Park, S.; Min, M.; Antonucci, V. Appl. Surf. Sci. 2001, 172, 33.
    (75) Pcuckert, M. Electrochim. Acta 1984, 29, 1315.
    (76) Shukla, A. K.; Aricò, A. S.; El-Khatib, M. K.; Kim, H.; Antonucci, P. L.; Antonucci, V. Appl. Surf. Sci. 1999, 137, 20.
    (77) (a) Liu, Z.; Lee, J. Y.; Chen, W.; Han, M.; Gan L. M. Langmuir 2004, 20, 181. (b) Baer, Y.; Heden, P. F.; Hederman, J.; Klasson, M.; Nording, C.; Siegbahn, K. Phys. Scr. 1970, 1, 55.
    (78) (a) Liu, Z.; Gan L. M.; Hong, L.; Chen, W.; Lee, J. Y. J. Power Sources 2005, 139, 73. (b) Shukla, A. K.; Ravikumar, M. K.; Roy, A.; Barman, S. R.; Sarma, D. D.; Aricò, A. S.; Antonucci, V.; Pino, L.; Giordano, N. J. Electrochem. Soc. 1994, 141, 1517.
    (79) (a) Roth, C.; Goetz, M.; Fuess, H. J. Appl. Electrochem. 2001, 31, 793. (b) Eberhardt, W. E.; Fayet, P.; Cox, D. M.; Fu, X.; Kalder, A.; Sherwood, R.; Sondericker, D. Phys. Rev. Lett. 1990, 64, 780.
    (80) Rolison, P. R.; Hagans, P. L.; Swider, K. E. Langmuir 1999, 15, 774.
    (81) Banerjea, D. Coordination chemistry, New Delhi, Tata McGraw-Hill Publishing Company Limited, 1993.
    (82) (a) Xiong, L.; Manthiram, A. Electrochim. Acta 2005, 50, 2323. (b) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L. J. Power Sources 2002, 105, 13.
    (83) Ren, X.; Wilson, M. S.; Gottesfeld, S. J. Electrochem. Soc. 1996, 143, L12.
    (84) Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras P. J. Power Sources 2004, 126, 16.
    (85) Wasmus, S.; Küver, A. J. Electroanal. Chem. 1999, 461, 14.
    (86) Ioroi, T.; Yasuda, K.; Siroma, Z.; Fujiwara, N. J. Electrochem. Soc. 2003, 150, A1225.
    (87) Carrette, L.; Friedrich, K.; Stimming, U. Chemphyschem, 2000, 1, 162-193.
    (88) Yan, S. et al. Electrochimica Acta ,52 (2006) 1692–1696

    下載圖示 校內:2008-07-26公開
    校外:2008-07-26公開
    QR CODE