簡易檢索 / 詳目顯示

研究生: 李紹民
Lee, Shao-Min
論文名稱: 奈米碳化矽/氮化矽複合陶瓷之製備、微結構 及機械性質之研究
Investigation of processing, microstructure and mechanical properties of nano-SiC/Si3N4 composite
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 119
中文關鍵詞: 陶瓷微結構分散奈米複合材料碳化矽氮化矽
外文關鍵詞: microstructure, Si3N4, dispersion, nanocomposite, ceramic, SiC
相關次數: 點閱:156下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文摘要

    氮化矽基陶瓷是目前被廣泛應用的結構陶瓷材料之一,其優異的性質包括質輕、高硬度、高強度、耐高溫、耐熱震及耐蝕性;且在高溫環境下,仍能保有極佳的強度、破壞韌性及耐熱衝擊性。由於奈米風潮的興起,近年來也有人在氮化矽陶瓷中添加奈米碳化矽作為強化第二相,期能強化氮化矽陶瓷之機械性質。

    本研究主要分為二部分,第一部份探討奈米級碳化矽在氮化矽中之分散,第二部份探討添加不同含量奈米級碳化矽之影響。實驗中以不同含量的奈米級碳化矽粉末(50 nm)分散於氮化矽基材中,利用適當的溶劑與分散劑及配合行星式高能量球磨機,有效分散碳化矽於基地中;並利用熱壓燒結製備SiC/Si3N4奈米複合材料,進而研究其機械性質。以X光繞射儀進行燒結體晶相分析,利用掃瞄式(SEM)與穿透式(TEM)電子顯微鏡觀察燒結體之微結構變化,並觀察奈米級碳化矽之分散情形。

    研究結果顯示,以乙醇作為碳化矽與氮化矽陶瓷粉之溶劑,並添加聚乙烯亞胺(PEI)為分散劑,能得到最佳的分散效果。而熱壓燒結後的燒結體,以穿透式電子顯微鏡(TEM)觀察發現,奈米碳化矽平均的粒徑均小於100 nm,主要分散在氮化矽晶粒間與晶界上。以SEM顯微結構照片以及影像分析儀之數據判斷,氮化矽的晶粒將隨著碳化矽添加量增加而出現降低的趨勢;由視長寬軸比(aspect ratio)比較,添加微量(5、10 wt %)的碳化矽能有效抑制氮化矽長柱狀晶粒的成長。當添加量增多時,抑制的現象並不明顯。由高解析度穿透式電子顯微鏡觀察碳化矽與氮化矽之間的界面關係,發現界面間存在因錯接合(mismatch)而引起的刃差排(edge dislocation)。

    添加不同含量奈米級碳化矽對氮化矽機械性質之影響的結果顯示,添加5 wt%碳化矽/氮化矽熱壓燒結體能得到最佳的破壞強度值,但隨著碳化矽添加量的增加,燒結體破壞強度有逐漸降低的趨勢。其原因為添加少量的碳化矽能有效抑制晶粒成長,所以破壞強度較高。

    添加5 wt%碳化矽/氮化矽熱壓燒結體同樣能得到最佳硬度值,整體晶粒較小是主要原因。而隨著碳化矽添加量的增加,燒結體硬度值卻逐漸降低,這是因為燒結體表面微孔隨著碳化矽的增加而增多,而導致硬度下降的趨勢。添加5 wt%碳化矽/氮化矽熱壓燒結體略比單質的氮化矽破壞韌性為高。而隨著碳化矽添加量的增多,燒結體破壞韌性呈現下降的趨勢。

    在燒結體的破壞行為中,無法判別奈米級碳化矽對氮化矽所造成的影響,但是由裂縫成長與破斷面之觀察仍可看到燒結體的韌化行為,主要以裂縫轉折、晶粒架橋、晶粒拔出等行為強化材料韌性。

    Abstract

    Industry application of silicon nitride ceramics is hindered because of its softening at high temperature and also its brittleness . In order to overcome the problems , one of the ways suggested some years ago is to prepare SiC-nanoparticle-reinforced Si3N4-matrix composites . This thesis reports the results of processing of SiC(n.p) / Si3N4 composites and characterization of the composites .

    SiC(n.p) /Si3N4 composites were fabricated by hot pressing at 1850℃ for 1 h in N2 atmosphere with Al2O3 and Yb2O3 as sintering additives . The optimum experimental procedure for manufacturing nanocomposites investigated by sedimentation test , planet ball milling test and different drying methods test .

    TEM observation showed that the SiC particles located within Si3N4 grain and on the grain boundary . While SiC particles dispersed in grain boundary are bonded to Si3N4 grain without glassy phase .

    The influence of SiC fine particle dispersion on microstructure and mechanical properties of Si3N4 ceramics has been investigated .The mean size and the aspect ratio of the obtained β- Si3N4 grains decreased as a result of the SiC dispersion , thus bringing about increased flexural strength and decreased fracture toughness .

    總目錄 論文摘要 I 英文摘要 III 總目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究目的及重點 3 第二章 理論基礎 5 2-1 材料特性簡介 5 2-1-1 碳化矽 5 2-1-2 氮化矽 7 2-2 奈米粒子之分散 7 2-3 陶瓷複合材料之製備 12 2-4 氮化矽基複合材料之燒結機制 15 2-5 複合材料之韌化機構 21 第三章 實驗方法與步驟 29 3-1 實驗設計 29 3-2 原始粉末規格及製備 29 3-2-1 原始粉末規格 29 3-2-2 起始粉末之製備 34 3-3 燒結體前備製程處理 34 3-3-1 沈降實驗 34 3-3-2 球磨實驗 35 3-3-3 乾燥實驗 35 3-4 熱壓燒結 36 3-5 燒結體基本性質量測 39 3-5-1 密度 39 3-5-2 彎曲強度 41 3-5-3 硬度 42 3-5-4 破壞韌性 43 3-6 燒結體微結構分析與觀察 44 3-6-1 晶相分析 44 3-6-2 SEM之觀察 44 3-6-3 HRTEM之觀察 45 3-6-4 晶粒大小與長寬軸比之測量 45 第四章 結果與討論 48 4-1 原始粉末之分析 48 4-2 奈米碳化矽/氮化矽複合材料之製程與開發 48 4-2-1 分散與沈降行為 48 4-2-2 高能量球磨之影響 53 4-2-3 乾燥方法之影響 58 4-3 燒結體基本性質分析 60 4-3-1 密度 60 4-3-2 晶相分析 63 4-4 燒結體微結構分析 63 4-4-1 顯微結構觀察 63 4-4-2 晶界相之探討 72 4-4-3 晶粒成長行為 83 4-4-4 碳化矽/氮化矽界面性質之探討 94 4-5 燒結體機械行為 98 4-5-1 彎曲強度 98 4-5-2 硬度 100 4-5-3 破壞韌性 102 4-5-4 破壞行為 104 第五章 結論 111 I. 奈米級碳化矽/氮化矽複合材料製程之開發 111 II. 添加不同含量奈米級碳化矽對氮化矽微結構之影響 111 Ⅲ. 添加不同含量奈米級碳化矽對氮化矽機械性質之影響 112 參考文獻 114 致謝 119 作者簡歷 119

    參考文獻

    1. A.Bellosi and G.Deportu, “Hot-pressed Si3N4-SiC Whisker Composites”,Material Science and Engineering, A 109 ,pp357-362 (1988) .
    2. Richard Warren ,et al, “SiC-Whisker-Reinforced Si3N4 Composites”, J. Am. Ceram. Soc. Bull,66 (2),pp330-pp333 (1987) .
    3. Hironori Kodama,et al, J. Am. Ceram. Soc, 72 (4),pp551-558 (1989).
    4. W.Foulds,et al, Ceram. Eng. Sci. Proc, 10,pp1083-1099 (1989) .
    5. K.Niihara, J.Ceram.Soc.Japan 99 (10) ,pp974.-982 (1991).
    6. T. YANAI et al, Journal of the Ceramic Society of Japan 103 (11) , pp11 77-1181 (1995) .
    7. A.Kaiser, et al, Nanostructured Materials Vol.8. No.4, pp489-497 (1997)
    8. K.Niihara,”New Design Concept of Structure Ceramic Composite”, J. Ceram. Soc. of Japan,Int.Edition,99,945-952(1992)
    9. Niihara.K, et al.”Interfaces in Si3N4-SiC nanocomposite.” J. Mater. Sci.Lett., 9,598-599 (1990) .
    10. H.Park,K.Niihara,”Microstructure and High Temperature Strength of Si3N4-SiC Nanocomposite .”
    11. E.T. Turkdogan, P.M.Bills and V.A.Tiooett, “Silicon Nitrides:Some Physico- Chemical Properties”, J.Appl.Chem.,8,296-302 (1958).
    12. K.Matsuhiro and T.Takajashi, “Physical Properties of Sintered Silicon Nitride Controlled by Grain Boundary Chemistry and Microstructure Morphology”,p.11-5, in Proceeding of the MRS International Meeting on Advanced Materials, Edited by M.Doyama etal., Material Research Society, Pittsburg, PA, 1989.
    13. 趙承深博士,”界面科學概論” (1984)經濟部,陶瓷技術手冊(下)
    14. Nihara,K.,”New design concept of structural ceramics : ceramic nano-composites .” J. Ceram. Soc. Jpn.,99,974-982 (1989)
    15. L.C. Stearns et al.,”Processing and Microstructure development in Al2O3-SiC nano composite,” J. Euro. Ceram. Soc., 10, 473-477(1992)
    16. K.Negita,J.Mat.Sci.Letter, v4,755-758 (1985)
    17. K.Negita,J.Mat.Sci.Letter,v4,417-418 (1985)
    18. W.D.Kingery, J. Appl. Phys., 30[3] 301-306 (1959)
    19. G.Woetting et al., MRS Symp. Proc., v287, Bosston ,MA,146,(1993)
    20. J.Weiss,Am. Rev. Mater. Sci.,11,381-399 (1981)
    21. M.Taya, S. Hayashi ,AA.S. Kobayashi, and H. S. Yoon,”Toughening of a Particulate Reinforced Ceramic-Matrix Composite by Thermal Residual Stress” ,J.Am.Ceram.Soc.,73 [5] 1382-91 (1990 )
    22. P.Becher, J.Am. Ceram. Soc.,74[2]255-269 (1991)
    23. K.T.Faber et al .,Acta Metall.,31 [4] 577-584 (1983)
    24. Eiji Tani, et al. Am.Ceramic. Soc.Bull.65 [9] pp .1311-1315 .(1986) .
    25. C.Z. Linda,J.Am. Ceram.Soc. 72 [3] 495-498 .(1989)
    26. S.Horowitz and J.K.Currie,J.Dispersion Science and Technology, 11 [6] 637-659 (1990)
    27. T.C. Lin et al.,The 1990 Annual conf. of the Chinese Soc for Mat.Sci.,903-907
    28. 王立銘,台大材料研究所碩士論文(1994)
    29. ASTM C373-72
    30. ASTM E855-81
    31. S.R.Choi and J. A. Salem, J. Mater. Sci. Lett., 14 (13-18) 1286-1288 (1995)
    32. G.Wotting et al., Non-Oxide Technique and Engineer Ceramics,pp.83-96 . Edited by S.Hamphire . (1986)
    33. E.T.Turkdogan,P.M.Bills and V.A Tiooett ,” Silicon Nitride : Some Physico–Chemical Properties “, J.Appl.Chem.,8,296-302 (1958)
    34. K.Matsuhiro and T.Takajashi, “Physical Properties of Sintered Silicon Nitride Controlled by Grain Boundary Chemistry and Microstructure Morphology”,p.11-5,in Proceeding of the MRS International Meeting on Advanced Materials, Edited by M.Doyama et al., Material Research Society ,Pittsburgh,PA,(1989).
    35. 經濟部,陶瓷技術手冊(上)
    36. K.T. Hwang, et al ,Material Letters 32 , 9 (1997) , 251-257.
    37. O.Sudre,”Effect of Inciusions on Densification : II, Numerical Model”, J. Am. Ceram. Soc.,75 [3]525-31 .
    38. O.Sudre,”Effect of Inciusions on Densification : II, Numerical Model”, J. Am. Ceram. Soc.,75 [3]525-31 .
    39. 施政宏, 國立成功大學材料科學及工程研究所碩士論文,(1997).6
    40. Hyoungjoon Park and Hyoun-Ee Kim ,”Microstructure Evolution and Mechanical Properties of Si3N4 with Yb2O3 as a Sintering Additive” J. Am. Ceram. Soc. 80,[3] 750-756 (1997) .
    41. Rongcan Zhou,Quangang Xian et al.,”Reactions between SiC and sintering aids in Si3N4/SiC nanocomposites and their consequences”, Ceramics International 27,571-576 (2001) .
    42. 盧鴻華, 國立成功大學材料科學及工程研究所博士論文,(2001).6
    43. M. Herrmann,et al,”Silicon Nirtride/Silicon Carbide Nanocomposite Materials : I, Fabrication and Mechanical Properties at Room Temperature ” J. Am. Ceram. Soc. 81[5]1095-1108 (1998) .
    44. Niihara,K., Suganuma.K.,Niihara,A. et al.,” Interface in Si3N4-SiC nano-composite . J. Mater. Sci. Lett., 9, 598-599 (1990)
    45. H.Park,and K.Niihara , “Microstructure and High-Temperature Strength of Si3N4-SiC Nanocomposite” J. European Ceramic Society 18 ,907-914 (1998) .
    46. Pan,X.and Niihara,K. et al, “ Silicon nitride based ceramic nano-composite .” J.Am. Ceram. Soc., 76. 585-590 .(1996)
    47. Nihara,K.,”New design concept of structural ceramics : ceramic nano-composites .” J. Ceram. Soc. Jpn.,99,974-982 (1991)
    48. Jian- Feng Yang, Niihara. K et al .,” Phase transformation , microstructure and mechanical properties of Si3N4/SiC composite.” J.Eur.Ceram. Soc. 21 ,2179-2183 (2001)
    49. Kingery,W.D.,Bowen,H.K. and Uhlmann,D.R.,”Introduction to Ceramic.” Wiley-Interscience, New York,(1975)
    50. Kitayama,M.,Hirao,K. et al ,”Modeling and simulation of grain growth inSi3N4 III. Tip shape evalution .” Acta Mater., 48. 4635-4640 (2000) .
    51. W.E.Lee and G.E.Hilmas,”Microstructural changes in β- silicon nitride grains upon crystallizing the grain-boundary glass”, J. Am. Ceram. Soc.,72[10] 1731-1737 (1989) .
    52. S.P.Kraus-lanteri,T.E. Mitchell, J. Am. Ceram.Soc. 69,256 (1986)
    53. Y.S.Song et al,”Si3N4 and Si3N4-SiC particulate composite ceramics” J. Mat. Processing Technology 56,346-353 (1996)
    54. R.J. Stokes and C.H.Li, J.Am.Ceram.Soc.46 ,423 (1963 )
    55. A.Kaiser et al,”Hot hardness and creep of Si3N4/SiC micro/nano- and nano/nano-composites .” Nanostructured Materials [8] ,No.4 p489-497 (1997)
    56. Shigemi Sato et al.,”Influence of SiC particle size on microstructure and Mechanical Properties of Si3N4/SiC composite Ceramics “J. Ceram.. Soc. Japan, p103-667 (1995)
    57. Pavol .and Hoffmann ,” Relationship between Microstructure , Toughening Mechanisms ,and Fracture Toughness of Reinforced Silicon Nitride Ceramics “ J. Am. Ceram . Soc. 78 [10]2619-2624 (1995) .
    58. J. Widegren,”The effect of acids and bases on the dispersion and stabilization of ceramic particles in ethanol .” J. European Ceramic of Soc. 20 , 659-665 (2000)
    59. G.Wotting et al., Non-Oxide Technique and Engineer ceramics,pp.83-96 . Edited by S.Hamphire .
    60. K.T.Faber, and A.G.Evans,” Crack Deflection Process-I. Theory”,Acta Metall.,31[4] 565-576 (1983) .
    61. P.Becher,”Microstructural Design of Toughened Ceramics”,J . Am. Ceram. Soc., 74[2] 255-269 (1991) .

    下載圖示 校內:2003-07-11公開
    校外:2003-07-11公開
    QR CODE