| 研究生: |
黃俊 Huang, Chun |
|---|---|
| 論文名稱: |
氣態氫化鈉分子D1Σ+與氘化鈉分子C1Σ+能態的位能探討 Study on the Potentials of the NaH D1Σ+ and the NaD C1Σ+ States |
| 指導教授: |
黃守仁
Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 氫化鈉 、氘化鈉 、雷射光譜 、登亥姆係數 、RKR位能曲線 、同位素轉移 |
| 外文關鍵詞: | sodium hydride, sodium deuteride, laser spectroscopy, Dunham coefficients, RKR potential curve, isotope shift |
| 相關次數: | 點閱:227 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究整理與再分析氫化鈉D1Σ+能態以及氘化鈉C1Σ+能態。氫化鈉D1Σ+方面,整理了本實驗室楊承翰、江仁楙、以及蕭翊翔學長的實驗數據,藉由最新發表的氫化鈉A1Σ+的振轉能態的能量作為中間態的能量,加上重新校正過的probing雷射能量值計算出D1Σ+各個振轉能級的絕對能量值,此方法消弭了不同實驗數據的誤差值。利用校正過的實驗數據,搭配理論計算的D1Σ+位能曲線[ Can. J. Phys. 87, 543 (2009)],分析出D state兩個位能井的振轉量子數及能量。經由些微改變理論計算位能曲線以及實驗數據的登亥姆係數運算結果,獲得更為吻合實驗數據的位能曲線。
氘化鈉C1Σ+方面,整理了本實驗室林明弘及鄭守恩學長的實驗數據,藉由重新校正過實驗所使用中間態氘化鈉A1Σ+振轉能態的能量,對比了經過同位素轉移的氫化鈉C1+能態[ J. Chem. Phys. 148, 114301 (2018) ],與同位素轉移後的數值較為接近,故以校正後的數據導出NaDC1Σ+雙位能井之下的RKR位能曲線。於雙位能井部分,利用NaH C1Σ+雙位能井位能曲線加以變形,擬合出符合NaD C1Σ+實驗數據值的位能曲線。
In this work, the experimental data of the NaH D1Σ+ state and the NaD C1Σ+ are reanalyzed. For the D1Σ+ state, the experimental works done by Yang, Chiang, and Hsiao are recalibrated by replacing the original intermediate A1Σ+ state with the latest published values and recalibrating the probing laser to calculate the absolute energy; this method diminishes the deviation among the different experimental works. By exploiting the recalibrated experimental signals and the potential energy curve of the theoretical ab initio calculation [ Can. J. Phys. 87, 543 (2009)], the vibrational quantum numbers and the corresponding rovibrational energies are indicated. Moreover, through the slight deformation of the theoretical potential curve, the new potential energy curve that accords better with the experimental data is presented.
For the NaD C1Σ+ state, experimental works performed by Lin and Cheng are reanalyzed. By recalibrating the NaD A1Σ+ intermediate state, the recalibrated experimental signals of the C1Σ+ state fits well with the isotopically shifted potential curve of the NaH C1Σ+ state [ J. Chem. Phys. 148, 114301 (2018) ], so these signals are applied to derive the RKR potential energy curve below the double-well region. Besides, by slightly deforming the potential energy curve of the double-well NaH C1Σ+ state, the potential energy curve that accords well with the experimental data of the C1Σ+ state is proposed.
1. Sansonetti, J. E., Wavelengths, Transition Probabilities,
and Energy Levels for the Spectra of Sodium (NaI–NaXI). J.
Phys. Chem. Ref. Data 2008, 37 (4), 1659-1763
2. Heger, M. L., Stationary Sodium Lines in Spectroscopic
Binaries Publ. Astron. Soc. Pac. 1919, 31 (184), 304-305.
3. Herzberg, G., Molecular Spectra and Molecular Structure.
In Spectra of Diatomic Molecules Robert E. Krieger
Publishing Co. : Malabar, Florida, 1989; Vol. 1.
4. Aymar, M.; Deiglmayr, J.; Dulieu, O., Systematic Trends in
Electronic Properties of Alkali Hydrides. Can. J. Phys.
2009, 87 (5), 543-556.
5. Hori, T., Das Absorptionsspektrum des Natriumhydrid. Z.
Phys. 1930, 62, 352-367.
6. Hori, T., Das Emissionsspektrum des Natriumhydrids. Z.
Phys. 1931, 71, 478-531.
7. Olson, E., Das Absorptionsspektrum des NaD. Z. Phys.
1934, 93, 206-219.
8. Pankhurst, R. C., Band Spectrum of Sodium Hydride.
Nature 1941, 147, 643.
9. Pankhurst, R. C., The Emission Spectrum of Sodium
Hydride. Proc. Phys. Soc. Lond. 1949, 62A, 191.
10. Orth, F. B.; Stwalley, W. C.; Yang, S. C.; Hsieh, Y. K., New
Spectroscopic Analyses and Potential Energy Curves for
the X1S+ and A1S+ States of NaH. J. Mol. Spectrosc.
1980, 79 (2), 314-322.
11. Sastry, K. V. L. N.; Eric, H.; Frank, C. D. L., The Millimeter
Wave Spectra of NaH and NaD. J Chem Phys 1981, 75 (10),
4753-4757.
12. Sastry, K. V. L. N.; Herbst, E.; Lucia, F. C. D., Laboratory
Millimeter and Submillimeter Spectrum of CCH. The
Astrophysical Journal 1981, 248, L53.
13. Leopold, K. R.; Zink, L. R.; Evenson, K. M.; Jennings, D.
A., Far-Infrared Spectrum of Sodium Hydride1. J. Mol.
Spectrosc. 1987, 122, 150-156.
14. Maki, A. G.; Olson, W. B., Infrared Spectrum of Sodium
Hydride. J. Chem. Phys. 1989, 90 (12), 6887-6892.
15. Dagdigian, P. J., Detection of LiH and NaH Molecular
Beams by laser Fluorescence and Measurement of
Radiative Lifetimes of the A1Σ+ state. J. Chem. Phys. 1976,
64 (6), 2609.
16. Baltayan, P.; Jourand, A.; Nedelec, O., Radiative Lifetime
of NaH A1Σ+ in a High Frequency Discharge. Phys. Lett.
1976, 58A (7), 443-445.
17. Nedelec, O.; Giroud, M., NaH: Studies of the X1Σ+ State
Near Dissociation and of the Radiative Lifetimes and
Collision Cross Sections of the A1Σ+ State. J. Chem. Phys.
1983, 79 (5), 2121-2125.
18. Leopold, K. R.; Zink, L. R.; Evenson, K. M.; Jennings, D.
A., Far-infrared spectrum of sodium hydride. J. Mol.
Spectrosc. 1987, 122 (1), 150-156.
19. Magg, U.; Jones, H., The Ground-state Infrared Spectrum
of Sodium Hydride. Chem. Phys. Lett. 1988, 146 (5), 415-
418.
20. Stwalley, W. C.; Zemke, W. T.; Yang, S. C., Spectroscopy
and Structure of the Lithium Hydride Diatomic Molecules
and Ions. J. Phys. Chem. Ref. Data. 1991, 20 (1), 153-187.
21. Rafi, M.; Ali, N.; Ahmad, K.; Khan, I. A.; Baig, M. A.; Iqbal,
Z., Near-dissociation photoabsorption spectra of LiH, NaH
and KH J. Phys. B: At. Mol. Opt. 1993, 26 (6), L129.
22. Lochbrunner, S.; Motzkus, M.; Pichler, G.; Kompa, K. L.;
Hering, P., New Dunham Coefficients of the A1S+-State of
NaH and NaD. Z. Phys. D 1996, 38 (1).
23. Bahns, J. T.; Tsai, C. C.; Ji, B.; Kim, J. T.; Zhao, G.;
Stwalley, W. C.; Bloch, J. C.; Field, R. W., Laser
Frequency-Modulated Spectroscopy of a Laser-Guided
Plasma in Sodium Vapor:. Line Positions for NaH (A1S+ -
X1S+), Na (9-13d and 11-14s), and Ar (5p-4s). J. Mol.
Spectrosc. 1997, 186 (2), 222-229.
24. Pesl, F. P.; Lutz, S.; Bergmann, K., Improved molecular
constants for the X1S+ and A1S+ states of NaH. Eur. Phys.
J D 2000, 10 (2), 247-257.
25. Huang, H. Y. Laser Spectroscopy of the X, A and C1S+
States in NaH Molecule. Ph.D. Thesis, National Cheng
Kung University, Taiwan, 2010.
26. Walji, S. D.; Sentjens, K. M.; Roy, R. J. L., Dissociation
Energies and Potential Energy Functions for the Ground
X1S+ and "Avoided-crossing" A1S+ States of NaH. J.
Chem. Phys. 2015, 142 (4), 044305.
27. Chu, C. C. Laser Spectroscopy Studies of NaH and NaD
Molecules. Ph. D. Thesis, National Cheng Kung University,
Taiwan, 2018.
28. Dickinson, A. S.; Poteau, R.; Gadea, F. X., An Ab Initio
Study of Mutual Neutralization in Na+ + H− Collisions. J.
Phys. B: At. Mol. Opt. Phys. 1999, 32 (23).
29. Lee, H. S.; Lee, Y. S.; Jeung, G. H., Singlet and Triplet S+
Excited States of NaH and KH: Undulating Potential Energy
Curves. Chemical Physics Letters 2000, 325, 7.
30. Leininger, T.; Gadea, F. X.; Dickinson, A. S., Broadening of
the Sodium 568.8, 589, 615.4 and 819.4 nm Lines by
Atomic Hydrogen. J. Phys. B: At. Mol. Opt. Phys. 2000, 33
(9), 1805-1817.
31. Huang, Y. L.; Luh, W. T.; Jeung, G. H.; Gade´a, F. X., The
D 1Σ+ State of 7LiH. J. Chem. Phys. 2000, 113 (2), 683-
689.
32. Yung, C. H. Optical-optical Double Resonance
Spetroscopy of the NaH D1S+ State. M.Sc.Thesis,
National Cheng Kung University, Taiwan, 2004.
33. Chiang, J. M. Spectroscopy Study of the NaH D1S+ Higher
Vibrational State Levels. M.Sc. Thesis, National Cheng
Kung University Taiwan, 2005.
34. Hsiao, Y. H. Spectroscopic Study of the NaH D1S+ State in
the Dissociation Limit and Double-well Potential M.Sc.
Thesis, National Cheng Kung University, Taiwan, 2007.
35. Boutalib, A.; Gadea, F. X., Ab initio Adiabatic and Aiabatic
Potential‐Energy Curves of the LiH Molecule. J. Chem.
Phys. 1992, 97 (2), 1144-1156.
36. Gemperle, F.; Gadea, F. X., Beyond Born–Oppenheimer
Spectroscopic Study for the Cstate of LiH. J. Chem. Phys.
1999, 110 (23), 11197-11205.
37. Lin, W. C.; Chen, J. J.; Luh, W. T., C1Σ+ State of 7LiH. J.
Phys. Chem. A 1997, 101 (36), 6709-6711.
38. Chen, J. J.; Luh, W. T.; Jeung, G. H., Spectroscopic Study
of the C 1Σ+ State of 7LiH. J. Chem. Phys. 1999, 110 (9),
4402-4409.
39. Hsu, S. K.; Wang, J. J.; Yu, P.; Wu, C. Y.; Luh, W. T.,
Spectroscopic Study of the C 1Σ+ State of 6LiH and 7LiD.
J. Phys. Chem. A 2002, 106 (26), 6279-6285.
40. Bouloufa, N.; Cabaret, L.; Luc, P.; Vetter, R.; Luh, W. T.,
An Optical-optical Double Resonance Experiment in LiH
Molecules: Lifetime Measurements in the C State. J.
Chem. Phys. 2004, 121 (15), 7237-7242.
41. Huang, H. Y.; Chang, Y. Y.; Liao, M. H.; Wu, K. L.; Lu, T.
L.; Chang, Y. Y.; Tsai, C. C.; Whang, T. J.,
Characterization of the Outer Well of NaH C1S+ State by
Fluorensce Depletion Spectroscopy. Chem. Phys. Lett.
2010, 493 (1-3), 53-56.
42. Chang, Y. Y. Optical-optical Double Resonance of the NaH
C1S+ State. M.Sc. Thesis, National Cheng Kung University,
Taiwan, 2000.
43. Liao, M. H. Absolute Vibrational Numbering of the NaH
C1S+ State. M.Sc. Thesis, National Cheng Kung University,
Taiwan, 2001.
44. Wu, K. L. Spectroscopy Study of the NaH C1S+ Higher and
Lower Vibrational State Levels. M.Sc. Thesis, National
Cheng Kung University, Taiwan, 2002.
45. Lu, T. L. SEP of the NaH X1S+ state and OODR of the
Intriguing Double-well C1S+ State. M.Sc. Thesis, National
Cheng Kung University, Taiwan, 2003.
46. Chu, C. C.; Huang, H. Y.; Whang, T. J.; Tsai, C. C.,
Observation of Double-well Potential of NaH C 1S+ State:
Deriving the Dissociation Energy of Its Ground State. J.
Chem. Phys. 2018, 148 (11).
47. Lin, M. H. Study of the Gas Phase NaD C1S+ State by
OODR Depletion. M.Sc. Thesis, National Cheng Kung
University, Taiwan, 2013.
48. Huang, H.-Y.; Chang, Y.-Y.; Liao, M.-H.; Wu, K.-L.; Lu,
T.-L.; Chang, Y.-Y.; Tsai, C.-C.; Whang, T.-J.,
Characterization of the Outer Well of NaH C1S+ State by
Fluorescence Depletion Spectroscopy. Chem. Phys. Lett.
2010, 493 (1-3), 53-56.
49. Cheng, S. E. Spectroscopy Study of the C1S+ Higher
Vibrational Levels in Gaseous Sodium Deuteride
Molecules. M.Sc. Thesis, National Cheng Kung University,
Taiwan, 2014.
50. McQuarrie, D. A., Quantum Chemistry. University Science
Books: Mill Valley, CA, 1983.
51. Schrodinger, E., An Undulatory Theory of the Mechanics of
Atoms and Molecules. Phys. Rev. 1926, 28 (6), 1049-1070.
52. Born, M.; Oppenheimer, J. R., The Quantumtheory of
Molecules. Ann. Phys. 1927, 84, 457-484.
53. Akhmeteli, A., One Real Function nstead of the Dirac
Spinor Function. J. Math. Phys. 2011, 52 (8), 082303.
54. Franck, J., Elementary Processes of Photochemical
Reaction. Trans. Faraday Soc. 1926, 21, 536-542.
55. Condon, E., A Theory of Intensity Distribution in Band
Systems. Phys. Rev. 1926, 28 (6), 1182-1201.
56. Banwell, C. N.; McCash, E. M., Fundamentals of Molecular
Spectroscopy. Tata McGraw-Hill: New Delhi, 1995.
57. Dunham, J. L., The Energy Levels of a Rotating Vibrator.
Phys. Rev. 1932, 41 (6), 721-731.
58. Dunham, J. L., The Wentzel-Brillouin-Kramers Method of
Solving the Wave Equation. Phys. Rev. 1932, 41 (6), 713-
720.
59. Heb, W.; Schmidt, J. W., Positive Quartic, Monotone
Quintic C2-spline Interpolation in one and two dimensions.
J. Comput. Appl. Math. 1994, 55, 51-67.
60. Chandra, S.; Sharma, A. K.; Khan, Z. H., New Method for
the Evaluation of the RKR Potential-integrals for Diatomic
Molecules. Pramana 1996, 47 (1), 65-77.
61. Devaquet, A., Avoided Crossings in Photochemistry. Pure
Appl. Chem. 1975, 41 (4), 455-473.
62. Gerstenkorn, S.; Luc, P., Absolute Iodine (I2) Standards
Measured by means of Fourier Transform Spectroscopy.
Rev. Phys. Appl. 1979, 14, 791-794.
63. Zhu, X.; Nur, A. H.; Misra, P., Laser Optogalvanic
Wavelength Calibration with a Commercial Hollow Cathode
Iron-neon Discharge Lamp. J. Quant. Spectrosc. Radiat.
Transfer 1994, 52, 167-177.
64. Gerstenkorn, S.; Luc, P., Atlas du spectre d'absorption de
la molecule d'iode. CNRS, Paris.
65. Kasahara, S.; Kowalczyk, P.; Kabir, M. H.; Baba, M.,
Doppler-Free UV-Visible Optical–optical Double
Resonance Polarization Spectroscopy of the 21Su+ Double
Minimum State and the C1Pu State of Li2. J. Chem. Phys.
2000, 113 (15), 6227-6234.
66. Chu, C. C.; Huang, H. Y.; Lin, H. C.; Hsiao, Y. H.; Whang,
T. J.; Tsai, C. C., Observation of the Shallow 21P State of
NaH. J. Chem. Phys. 2019, 150 (2), 024303.
67. Kosman, W. M.; Hinze, J., Inverse Perturbation Analysis:
Improving the Accuracy of Potential Energy Curves. J. Mol.
Spectrosc. 1975, 56, 93-103.
68. Vidal, C. R.; Scheingraber, H., Determination of Diatomic
Molecular Constants Using An Inverted Perturbation
Approach. J. Mol. Spectrosc. 1977, 65, 46-64.
69. Proctor, T. R.; Stwalley, W. C., The Long‐range Interactions
of S‐state Alkali Atoms with Rare Gas and Hydrogen
Atoms. J. Chem. Phys. 1977, 66 (5), 2063-2073.