簡易檢索 / 詳目顯示

研究生: 黃俊
Huang, Chun
論文名稱: 氣態氫化鈉分子D1Σ+與氘化鈉分子C1Σ+能態的位能探討
Study on the Potentials of the NaH D1Σ+ and the NaD C1Σ+ States
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 163
中文關鍵詞: 氫化鈉氘化鈉雷射光譜登亥姆係數RKR位能曲線同位素轉移
外文關鍵詞: sodium hydride, sodium deuteride, laser spectroscopy, Dunham coefficients, RKR potential curve, isotope shift
相關次數: 點閱:227下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究整理與再分析氫化鈉D1Σ+能態以及氘化鈉C1Σ+能態。氫化鈉D1Σ+方面,整理了本實驗室楊承翰、江仁楙、以及蕭翊翔學長的實驗數據,藉由最新發表的氫化鈉A1Σ+的振轉能態的能量作為中間態的能量,加上重新校正過的probing雷射能量值計算出D1Σ+各個振轉能級的絕對能量值,此方法消弭了不同實驗數據的誤差值。利用校正過的實驗數據,搭配理論計算的D1Σ+位能曲線[ Can. J. Phys. 87, 543 (2009)],分析出D state兩個位能井的振轉量子數及能量。經由些微改變理論計算位能曲線以及實驗數據的登亥姆係數運算結果,獲得更為吻合實驗數據的位能曲線。
    氘化鈉C1Σ+方面,整理了本實驗室林明弘及鄭守恩學長的實驗數據,藉由重新校正過實驗所使用中間態氘化鈉A1Σ+振轉能態的能量,對比了經過同位素轉移的氫化鈉C1+能態[ J. Chem. Phys. 148, 114301 (2018) ],與同位素轉移後的數值較為接近,故以校正後的數據導出NaDC1Σ+雙位能井之下的RKR位能曲線。於雙位能井部分,利用NaH C1Σ+雙位能井位能曲線加以變形,擬合出符合NaD C1Σ+實驗數據值的位能曲線。

    In this work, the experimental data of the NaH D1Σ+ state and the NaD C1Σ+ are reanalyzed. For the D1Σ+ state, the experimental works done by Yang, Chiang, and Hsiao are recalibrated by replacing the original intermediate A1Σ+ state with the latest published values and recalibrating the probing laser to calculate the absolute energy; this method diminishes the deviation among the different experimental works. By exploiting the recalibrated experimental signals and the potential energy curve of the theoretical ab initio calculation [ Can. J. Phys. 87, 543 (2009)], the vibrational quantum numbers and the corresponding rovibrational energies are indicated. Moreover, through the slight deformation of the theoretical potential curve, the new potential energy curve that accords better with the experimental data is presented.
    For the NaD C1Σ+ state, experimental works performed by Lin and Cheng are reanalyzed. By recalibrating the NaD A1Σ+ intermediate state, the recalibrated experimental signals of the C1Σ+ state fits well with the isotopically shifted potential curve of the NaH C1Σ+ state [ J. Chem. Phys. 148, 114301 (2018) ], so these signals are applied to derive the RKR potential energy curve below the double-well region. Besides, by slightly deforming the potential energy curve of the double-well NaH C1Σ+ state, the potential energy curve that accords well with the experimental data of the C1Σ+ state is proposed.

    摘 要 I ABSTRACT II 誌 謝 III TABLE OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 1.1 Research motivation 1 1.2 Literature review 4 1.2.1 The research history of NaH and NaD 4 1.2.2 The research of NaH D1+ state 6 1.2.3 The research of NaD C1+ state 12 CHAPTER 2 THEORIES of LASER SPECTROSCOPY 15 2.1 The Schrödinger equation 15 2.2 The Born-Oppenheimer approximation 15 2.3 Rovibrational spectroscopy of diatomic molecule 16 2.4 The Dunham expansion 18 2.5 The Term Symbol of the diatomic molecule 19 2.6 The selection rules 20 2.7 The Franck-Condon principle 21 2.8 The Isotope Effect 22 2.9 Spline Interpolation 23 2.10 Rydberg-Klein-Rees potential curve 24 2.11 Avoided crossing rule 25 CHAPTER 3 REANALYSIS of NaH D1+ STATE 27 3.1 Recalibration of the signals 27 3.1.1 Recalibration of A1+ intermediate state 28 3.1.2 Recalibration of probing laser 30 3.2 The additional signals added 31 3.2.1 Examination of the additional signals 33 3.2.2 Determination of the energy barrier 35 3.3 The potential energy curve 39 3.3.1 The theoretical ab initio potential energy curve 39 3.3.2 Deformed ab initio energy curve 46 3.3.3 The hybrid potential energy curve 56 3.4 Determination of the dissociation energy 67 3.5 The above-dissociation signals 71 3.6 Conclusion 76 CHAPTER 4 REANALYSIS of NaD C1+ STATE 77 4.1 Recalibration of the intermediate NaD A1+ state 77 4.2 Determination of the double-well region 78 4.3 The potential energy curve of the NaD C1+ state 80 4.3.1 Isotope shift of the NaH C1+ state 80 4.3.2 RKR potential energy curve 81 4.3.3 The hybrid potential energy curve 84 4.4 Determination of the dissociation energy 87 4.5 Conclusion 92 REFERENCES 93 APPENDICES 98 APPENDIX A 98 APPENDIX B 139

    1. Sansonetti, J. E., Wavelengths, Transition Probabilities,
    and Energy Levels for the Spectra of Sodium (NaI–NaXI). J.
    Phys. Chem. Ref. Data 2008, 37 (4), 1659-1763
    2. Heger, M. L., Stationary Sodium Lines in Spectroscopic
    Binaries Publ. Astron. Soc. Pac. 1919, 31 (184), 304-305.
    3. Herzberg, G., Molecular Spectra and Molecular Structure.
    In Spectra of Diatomic Molecules Robert E. Krieger
    Publishing Co. : Malabar, Florida, 1989; Vol. 1.
    4. Aymar, M.; Deiglmayr, J.; Dulieu, O., Systematic Trends in
    Electronic Properties of Alkali Hydrides. Can. J. Phys.
    2009, 87 (5), 543-556.
    5. Hori, T., Das Absorptionsspektrum des Natriumhydrid. Z.
    Phys. 1930, 62, 352-367.
    6. Hori, T., Das Emissionsspektrum des Natriumhydrids. Z.
    Phys. 1931, 71, 478-531.
    7. Olson, E., Das Absorptionsspektrum des NaD. Z. Phys.
    1934, 93, 206-219.
    8. Pankhurst, R. C., Band Spectrum of Sodium Hydride.
    Nature 1941, 147, 643.
    9. Pankhurst, R. C., The Emission Spectrum of Sodium
    Hydride. Proc. Phys. Soc. Lond. 1949, 62A, 191.
    10. Orth, F. B.; Stwalley, W. C.; Yang, S. C.; Hsieh, Y. K., New
    Spectroscopic Analyses and Potential Energy Curves for
    the X1S+ and A1S+ States of NaH. J. Mol. Spectrosc.
    1980, 79 (2), 314-322.
    11. Sastry, K. V. L. N.; Eric, H.; Frank, C. D. L., The Millimeter
    Wave Spectra of NaH and NaD. J Chem Phys 1981, 75 (10),
    4753-4757.
    12. Sastry, K. V. L. N.; Herbst, E.; Lucia, F. C. D., Laboratory
    Millimeter and Submillimeter Spectrum of CCH. The
    Astrophysical Journal 1981, 248, L53.
    13. Leopold, K. R.; Zink, L. R.; Evenson, K. M.; Jennings, D.
    A., Far-Infrared Spectrum of Sodium Hydride1. J. Mol.
    Spectrosc. 1987, 122, 150-156.
    14. Maki, A. G.; Olson, W. B., Infrared Spectrum of Sodium
    Hydride. J. Chem. Phys. 1989, 90 (12), 6887-6892.
    15. Dagdigian, P. J., Detection of LiH and NaH Molecular
    Beams by laser Fluorescence and Measurement of
    Radiative Lifetimes of the A1Σ+ state. J. Chem. Phys. 1976,
    64 (6), 2609.
    16. Baltayan, P.; Jourand, A.; Nedelec, O., Radiative Lifetime
    of NaH A1Σ+ in a High Frequency Discharge. Phys. Lett.
    1976, 58A (7), 443-445.
    17. Nedelec, O.; Giroud, M., NaH: Studies of the X1Σ+ State
    Near Dissociation and of the Radiative Lifetimes and
    Collision Cross Sections of the A1Σ+ State. J. Chem. Phys.
    1983, 79 (5), 2121-2125.
    18. Leopold, K. R.; Zink, L. R.; Evenson, K. M.; Jennings, D.
    A., Far-infrared spectrum of sodium hydride. J. Mol.
    Spectrosc. 1987, 122 (1), 150-156.
    19. Magg, U.; Jones, H., The Ground-state Infrared Spectrum
    of Sodium Hydride. Chem. Phys. Lett. 1988, 146 (5), 415-
    418.
    20. Stwalley, W. C.; Zemke, W. T.; Yang, S. C., Spectroscopy
    and Structure of the Lithium Hydride Diatomic Molecules
    and Ions. J. Phys. Chem. Ref. Data. 1991, 20 (1), 153-187.
    21. Rafi, M.; Ali, N.; Ahmad, K.; Khan, I. A.; Baig, M. A.; Iqbal,
    Z., Near-dissociation photoabsorption spectra of LiH, NaH
    and KH J. Phys. B: At. Mol. Opt. 1993, 26 (6), L129.
    22. Lochbrunner, S.; Motzkus, M.; Pichler, G.; Kompa, K. L.;
    Hering, P., New Dunham Coefficients of the A1S+-State of
    NaH and NaD. Z. Phys. D 1996, 38 (1).
    23. Bahns, J. T.; Tsai, C. C.; Ji, B.; Kim, J. T.; Zhao, G.;
    Stwalley, W. C.; Bloch, J. C.; Field, R. W., Laser
    Frequency-Modulated Spectroscopy of a Laser-Guided
    Plasma in Sodium Vapor:. Line Positions for NaH (A1S+ -
    X1S+), Na (9-13d and 11-14s), and Ar (5p-4s). J. Mol.
    Spectrosc. 1997, 186 (2), 222-229.
    24. Pesl, F. P.; Lutz, S.; Bergmann, K., Improved molecular
    constants for the X1S+ and A1S+ states of NaH. Eur. Phys.
    J D 2000, 10 (2), 247-257.
    25. Huang, H. Y. Laser Spectroscopy of the X, A and C1S+
    States in NaH Molecule. Ph.D. Thesis, National Cheng
    Kung University, Taiwan, 2010.
    26. Walji, S. D.; Sentjens, K. M.; Roy, R. J. L., Dissociation
    Energies and Potential Energy Functions for the Ground
    X1S+ and "Avoided-crossing" A1S+ States of NaH. J.
    Chem. Phys. 2015, 142 (4), 044305.
    27. Chu, C. C. Laser Spectroscopy Studies of NaH and NaD
    Molecules. Ph. D. Thesis, National Cheng Kung University,
    Taiwan, 2018.
    28. Dickinson, A. S.; Poteau, R.; Gadea, F. X., An Ab Initio
    Study of Mutual Neutralization in Na+ + H− Collisions. J.
    Phys. B: At. Mol. Opt. Phys. 1999, 32 (23).
    29. Lee, H. S.; Lee, Y. S.; Jeung, G. H., Singlet and Triplet S+
    Excited States of NaH and KH: Undulating Potential Energy
    Curves. Chemical Physics Letters 2000, 325, 7.
    30. Leininger, T.; Gadea, F. X.; Dickinson, A. S., Broadening of
    the Sodium 568.8, 589, 615.4 and 819.4 nm Lines by
    Atomic Hydrogen. J. Phys. B: At. Mol. Opt. Phys. 2000, 33
    (9), 1805-1817.
    31. Huang, Y. L.; Luh, W. T.; Jeung, G. H.; Gade´a, F. X., The
    D 1Σ+ State of 7LiH. J. Chem. Phys. 2000, 113 (2), 683-
    689.
    32. Yung, C. H. Optical-optical Double Resonance
    Spetroscopy of the NaH D1S+ State. M.Sc.Thesis,
    National Cheng Kung University, Taiwan, 2004.
    33. Chiang, J. M. Spectroscopy Study of the NaH D1S+ Higher
    Vibrational State Levels. M.Sc. Thesis, National Cheng
    Kung University Taiwan, 2005.
    34. Hsiao, Y. H. Spectroscopic Study of the NaH D1S+ State in
    the Dissociation Limit and Double-well Potential M.Sc.
    Thesis, National Cheng Kung University, Taiwan, 2007.
    35. Boutalib, A.; Gadea, F. X., Ab initio Adiabatic and Aiabatic
    Potential‐Energy Curves of the LiH Molecule. J. Chem.
    Phys. 1992, 97 (2), 1144-1156.
    36. Gemperle, F.; Gadea, F. X., Beyond Born–Oppenheimer
    Spectroscopic Study for the Cstate of LiH. J. Chem. Phys.
    1999, 110 (23), 11197-11205.
    37. Lin, W. C.; Chen, J. J.; Luh, W. T., C1Σ+ State of 7LiH. J.
    Phys. Chem. A 1997, 101 (36), 6709-6711.
    38. Chen, J. J.; Luh, W. T.; Jeung, G. H., Spectroscopic Study
    of the C 1Σ+ State of 7LiH. J. Chem. Phys. 1999, 110 (9),
    4402-4409.
    39. Hsu, S. K.; Wang, J. J.; Yu, P.; Wu, C. Y.; Luh, W. T.,
    Spectroscopic Study of the C 1Σ+ State of 6LiH and 7LiD.
    J. Phys. Chem. A 2002, 106 (26), 6279-6285.
    40. Bouloufa, N.; Cabaret, L.; Luc, P.; Vetter, R.; Luh, W. T.,
    An Optical-optical Double Resonance Experiment in LiH
    Molecules: Lifetime Measurements in the C State. J.
    Chem. Phys. 2004, 121 (15), 7237-7242.
    41. Huang, H. Y.; Chang, Y. Y.; Liao, M. H.; Wu, K. L.; Lu, T.
    L.; Chang, Y. Y.; Tsai, C. C.; Whang, T. J.,
    Characterization of the Outer Well of NaH C1S+ State by
    Fluorensce Depletion Spectroscopy. Chem. Phys. Lett.
    2010, 493 (1-3), 53-56.
    42. Chang, Y. Y. Optical-optical Double Resonance of the NaH
    C1S+ State. M.Sc. Thesis, National Cheng Kung University,
    Taiwan, 2000.
    43. Liao, M. H. Absolute Vibrational Numbering of the NaH
    C1S+ State. M.Sc. Thesis, National Cheng Kung University,
    Taiwan, 2001.
    44. Wu, K. L. Spectroscopy Study of the NaH C1S+ Higher and
    Lower Vibrational State Levels. M.Sc. Thesis, National
    Cheng Kung University, Taiwan, 2002.
    45. Lu, T. L. SEP of the NaH X1S+ state and OODR of the
    Intriguing Double-well C1S+ State. M.Sc. Thesis, National
    Cheng Kung University, Taiwan, 2003.
    46. Chu, C. C.; Huang, H. Y.; Whang, T. J.; Tsai, C. C.,
    Observation of Double-well Potential of NaH C 1S+ State:
    Deriving the Dissociation Energy of Its Ground State. J.
    Chem. Phys. 2018, 148 (11).
    47. Lin, M. H. Study of the Gas Phase NaD C1S+ State by
    OODR Depletion. M.Sc. Thesis, National Cheng Kung
    University, Taiwan, 2013.
    48. Huang, H.-Y.; Chang, Y.-Y.; Liao, M.-H.; Wu, K.-L.; Lu,
    T.-L.; Chang, Y.-Y.; Tsai, C.-C.; Whang, T.-J.,
    Characterization of the Outer Well of NaH C1S+ State by
    Fluorescence Depletion Spectroscopy. Chem. Phys. Lett.
    2010, 493 (1-3), 53-56.
    49. Cheng, S. E. Spectroscopy Study of the C1S+ Higher
    Vibrational Levels in Gaseous Sodium Deuteride
    Molecules. M.Sc. Thesis, National Cheng Kung University,
    Taiwan, 2014.
    50. McQuarrie, D. A., Quantum Chemistry. University Science
    Books: Mill Valley, CA, 1983.
    51. Schrodinger, E., An Undulatory Theory of the Mechanics of
    Atoms and Molecules. Phys. Rev. 1926, 28 (6), 1049-1070.
    52. Born, M.; Oppenheimer, J. R., The Quantumtheory of
    Molecules. Ann. Phys. 1927, 84, 457-484.
    53. Akhmeteli, A., One Real Function nstead of the Dirac
    Spinor Function. J. Math. Phys. 2011, 52 (8), 082303.
    54. Franck, J., Elementary Processes of Photochemical
    Reaction. Trans. Faraday Soc. 1926, 21, 536-542.
    55. Condon, E., A Theory of Intensity Distribution in Band
    Systems. Phys. Rev. 1926, 28 (6), 1182-1201.
    56. Banwell, C. N.; McCash, E. M., Fundamentals of Molecular
    Spectroscopy. Tata McGraw-Hill: New Delhi, 1995.
    57. Dunham, J. L., The Energy Levels of a Rotating Vibrator.
    Phys. Rev. 1932, 41 (6), 721-731.
    58. Dunham, J. L., The Wentzel-Brillouin-Kramers Method of
    Solving the Wave Equation. Phys. Rev. 1932, 41 (6), 713-
    720.
    59. Heb, W.; Schmidt, J. W., Positive Quartic, Monotone
    Quintic C2-spline Interpolation in one and two dimensions.
    J. Comput. Appl. Math. 1994, 55, 51-67.
    60. Chandra, S.; Sharma, A. K.; Khan, Z. H., New Method for
    the Evaluation of the RKR Potential-integrals for Diatomic
    Molecules. Pramana 1996, 47 (1), 65-77.
    61. Devaquet, A., Avoided Crossings in Photochemistry. Pure
    Appl. Chem. 1975, 41 (4), 455-473.
    62. Gerstenkorn, S.; Luc, P., Absolute Iodine (I2) Standards
    Measured by means of Fourier Transform Spectroscopy.
    Rev. Phys. Appl. 1979, 14, 791-794.
    63. Zhu, X.; Nur, A. H.; Misra, P., Laser Optogalvanic
    Wavelength Calibration with a Commercial Hollow Cathode
    Iron-neon Discharge Lamp. J. Quant. Spectrosc. Radiat.
    Transfer 1994, 52, 167-177.
    64. Gerstenkorn, S.; Luc, P., Atlas du spectre d'absorption de
    la molecule d'iode. CNRS, Paris.
    65. Kasahara, S.; Kowalczyk, P.; Kabir, M. H.; Baba, M.,
    Doppler-Free UV-Visible Optical–optical Double
    Resonance Polarization Spectroscopy of the 21Su+ Double
    Minimum State and the C1Pu State of Li2. J. Chem. Phys.
    2000, 113 (15), 6227-6234.
    66. Chu, C. C.; Huang, H. Y.; Lin, H. C.; Hsiao, Y. H.; Whang,
    T. J.; Tsai, C. C., Observation of the Shallow 21P State of
    NaH. J. Chem. Phys. 2019, 150 (2), 024303.
    67. Kosman, W. M.; Hinze, J., Inverse Perturbation Analysis:
    Improving the Accuracy of Potential Energy Curves. J. Mol.
    Spectrosc. 1975, 56, 93-103.
    68. Vidal, C. R.; Scheingraber, H., Determination of Diatomic
    Molecular Constants Using An Inverted Perturbation
    Approach. J. Mol. Spectrosc. 1977, 65, 46-64.
    69. Proctor, T. R.; Stwalley, W. C., The Long‐range Interactions
    of S‐state Alkali Atoms with Rare Gas and Hydrogen
    Atoms. J. Chem. Phys. 1977, 66 (5), 2063-2073.

    下載圖示 校內:2024-09-24公開
    校外:2024-09-24公開
    QR CODE