| 研究生: |
梁瑾瑩 Liang, Chin-Ying |
|---|---|
| 論文名稱: |
利用 NBO 理論探討有機酸衍生物的水解反應 Investigation of Hydrolysis of Carboxylic Acid Derivatives by NBO Theory |
| 指導教授: |
蘇世剛
Su, Shyh-Gang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 水解 、孤電子對 、天然鍵性軌域 、有機酸衍生物 |
| 外文關鍵詞: | hydrolysis, carboxylic acid derivatives, natural bond orbital, lone pair |
| 相關次數: | 點閱:113 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是以天然鍵性軌域理論(NBO)的『donor-acceptor interaction』概念為基礎,探討有機酸衍生物的水解反應。首先我們討論無攻擊劑狀態時,有機酸衍生物分子內的電荷轉移情形,再衍生到這些分子發生水解反應時,分子內及分子間的電荷移轉。
計算有機酸衍生物,我們發現碳醯基氧上孤對電子對具有削弱鄰近σC-X*鍵的能力,且愈易離去的離去基,其『lpC=O→σC-X*』能量越大。主要是因為愈易離去的離去基,本身分子中的σC-X* 軌域能量較穩定,所以『lpC=O→σC-X*』能量較大。
在模擬水解反應部分,我們分成有機酸衍生物(CH3COX,X=F、Cl、Br、OCH3)的中性水解反應及乙酸甲酯(CH3COOCH3)的鹼性水解反應。我們得到無論中性與鹼性的狀況,攻擊劑上的孤電子對主要都是扮演削弱πC=O的角色,且削弱πC=O之後,間接提升碳醯基氧上孤電子對的軌域能量,縮短孤電子對與σC-X*的能差。攻擊劑以這樣的方式幫助反應進行,但是最後離去基的離去仍取決於σC-X*本身的軌域能階高低。模擬乙醯氟與乙酸甲酯的中性水解及乙酸甲酯的鹼性水解,我們發現它們本身σC-X*軌域能量較乙醯溴及乙醯氯來的高,因此就算攻擊劑有幫助反應進行,最後離去基仍未離去。
Donor-acceptor interaction concept of the natural bond orbital theory was applied to evaluate charge transfer in carboxylic acid derivatives and in hydrolysis of carboxylic acid derivatives in our study respectively.
In our calculations of carboxylic acid derivatives, lone pair on the oxygen atom of carbonyl group was observed to donate to neighbor σC-X* orbital. And the better leaving group has more 『lpC=O→σC-X*』interaction energies by it’s lowerσC-X* orbital energy.
For hydrolysis of carboxylic acid derivatives, we calculate CH3COX(X= F、Cl、Br、OCH3)in water and CH3COX(X= OCH3)in base-catalyzed surroundings respectively. The results are similar in different cases, that lone pair on nucleophilic reagent mainly donates to πC=O* orbital, result in energy increasing of lone pair on the oxygen atom of carbonyl group. Furthermore, the energy gap between the lone pair on the oxygen atom of carbonyl group and σC-X* orbital will get smaller. The nucleophilic reagent helps hydrolysis reaction processing with this way. However the leaving group leaves or not depending on σC-X* orbital energy. To simulating hydrolysis of acetyl fluoride and methyl acetate in water and hydrolysis of methyl acetate in base-catalyzed surroundings, we found that their σC-X* orbital energy is higher than acetyl chloride and acetyl bromide. Although the nucleophile reagent helps reaction processing, the leaving group still did not leave.
1. Yang W.and Drueckhammer D. G.; J. Am. Chem. Soc. 2001, 123, 11004
2. Sauers R. R.; Tetrahedron 1999, 55, 10013
3. Reed A. E.and Weinhold F.; J. Chem. Phys. 1983, 78(6), 4066
4. Kallies. B.and Kleinpeter. E.and Koch. A.and Mitzner. R.; J. Mol. Struct. 1997, 435, 123
5. Felix Haurowitz and程崇道譯;生物化學
6. Chang-Guo Zhan and Donald W. Landry and Rick L. Ornstein.; J. Am. Chem. Soc. 2000, 122, 2621
7. L. Berder. ; J. Am. Chem. Soc. 1951, 73, 1626
8. Cocivera M.and Effio. A.; J. Am. Chem. Soc. 1976, 98, 1573
9. Asubiojo I. and Brauman. I.; J. Am. Chem. Soc. 1979, 101, 3715
10. Samuel D.and Silver B.L. ; Adv.Phys.Org.Chem.1965,3,123
11. Fukuda E.K.and Mclver R.T.Jr. ; J. Am. Chem. Soc.1979,101,2498
12. Johlman C.L.and Wilkins C.L. ; J. Am. Chem. Soc.1985,107,327
13. Guthrie J.P. ; J. Am. Chem. Soc.1991,113,3941
14. Hengge A. ; J. Am. Chem. Soc.1992,114,6575
15. Marlier J.F. ; J. Am. Chem. Soc.1993,115,5953
16. Bowden K. ; Adv.Phys.Org.Chem.1993,28,171
17. Bowden K.and Izadi J.and Powell S.L. ; J.Chem.Rev.1997,404
18. Hori.K.and Kamimura A.and Ando K.and Nakao Y.Mizumura M. ; Tetrahedron.1994,53,2053
19. Sherer E.C.and Yang G.and Turner G.M.and Shields G.C.and Landry D.W. ; J.Phys.Chem.A.1997,101,8526
20. Zhan C.-G.and Landry D.W.and Ornstein R.L. ; J. Am. Chem. Soc.2000,122,1522
21. Williams I.H.and Spangler D.and Femec D.A.and Maggiora G.M.and Schowen R.L. ; J. Am. Chem. Soc.1980,102,6621
22. Williams I.H.and Spangler D.and Femec D.A.and Maggiora G.M.and Schowen R.L. ; J. Am. Chem. Soc.1983,105,31
23. E. H Chen.and T. C. Chang ; J. Mol. Struct. (Theochem) 1998, 429, 153
24. A. E. Reed and L. A. Curtiss and F. Weinhold ; Chem. Rev. 1988, 88, 899
25. IRA N.Levine ; Quantum Chemistry,fifth edition
26. Becke A. D. ; Phys. Rev. A 1998, 38, 3098
27. Lee C.and Yang W.and Parr R. G. ; Phys. Rev. B 1998, 37, 785
28. H.K.Hall ; J. Am. Chem. Soc.1955,20,5993
29. C.Gardner Swain and Carleton B.Scott. ; J. Am. Chem. Soc.1952,75,246
30. Fairclough R.A.and Hinshelwood C.N. ; J. Am. Chem. Soc.1937,538
31. Zechel D.L.and Withers S.G. ; Acc.Chem.Res.2000,33,11
32. li Y.-K.and Chir J.and Tanaka S.and Chen.F.-Y.; Biochemistry.2002,41,2751