簡易檢索 / 詳目顯示

研究生: 廖盈勳
Liao, Ying-Hsun
論文名稱: 應用環狀指叉型電極晶片於尿液中細菌檢驗之樣本前處理步驟探討
Exploration of Sample Pretreatment for Screening Urinal Bacteria with Ring-Shaped Interdigitated Electrode Chip
指導教授: 張憲彰
Chang, Hsien-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 47
中文關鍵詞: 環狀指叉型電極晶片大腸桿菌離心水試樣前處理
外文關鍵詞: Ring-Shaped Interdigitated Electrode (RIDE) chip, E. coli, centrifugation, aqua-sample pretreatment
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著我國物聯網產業創新應用發展的推動及高齡化社會到來,需更加完善的遠端照護設備,也隨著微奈米材料及微機電科技發展的成熟,使元件可以微小化,讓相關應用可以蓬勃發展,如手機、輔具科技、檢驗醫學等方面,成為當下政府積極推動的明星產業,從產業經濟與趨勢研究報告中心的相關建言中,提到台灣智慧城市價值創造應從解決在地問題著手,而醫療照護社會成本過高是我國面臨社會問題裡的其中一項,俗話說:預防勝於治療,疾病早期發現早期治療通常有最佳療效,且有助於節省醫療資源及可廣泛應用於醫療保健用途;而以前疾病的篩檢主要是病灶在外觀上出現異常,例如:癌症患者組織明顯增生,再經由影像判讀時,通常已經是疾病中後期,所以由人體生理狀態下,正常應有的化學物質含量變化,當作判定原理的可快速篩檢的檢驗醫學儀器已是不可或缺的一角。本研究結合微機電製程技術與交流電動力可濃縮生物粒子的作用,使檢驗平台微小化、檢體減量及不需外加流體驅動力,具有可使檢驗時間縮短及方便攜帶的優點;根據我們實驗參數下得到的實驗結果來分析,本實驗晶片用來收集菌尿症中最常分離出的大腸桿菌,實驗結果顯示具很好的線性關係(R2= 0.99),顯示所探討出來的水試樣前處理法可導入環狀指叉型電極晶片於尿液中細菌量之檢驗,將有助於菌尿症快速判知上的應用。

    Bio-chips have recently emerged as a potential tool for detecting bio-particles such as bacteria, virus, DNA, RNA, and so on, with bio-chips using ACEO combined with P-DEP force of AC electro-kinetic force applied for separation or concentration of the materials of interest. The aim of this study was to investigate the efficacy of the rapid screening of bacteriuria by a Ring-shaped Interdigitated Electrode (RIDE). The fabrication procedure, sample preparation, and optimum experimental parameters of frequency and voltage for E. coli (ATCC25922) are discussed to examine the particle concentration efficiency. E. coli in healthy urine is used as a phantom to test the chip performance. The results showed that E. coli in healthy urine exhibited a linear relationship with time in the range of validity (R2=0.99). This means that the method of aqua-sample pretreatment may be introduced into a Ring-Shaped Interdigitated Electrode Chip, with potential applications for screening out bacteriuria.

    Abstract I 中文摘要 II 誌謝 III Contents IV List of Figures VI List of Tables IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Traditional Methods 5 1.2.1 Reagent Strip Test for Bacteriuria 5 1.2.2 Direct Microscopic Count 6 1.2.3 Standard Plate Count (SPC) 6 1.2.4 Laboratory Diagnostics 7 1.3 Literature Review and Motivation 8 1.4 Theory of Electro-kinetics 13 1.4.1 Di-electrophoresis (DEP) 13 1.4.2 Electric double layer (EDL) 16 1.4.3 Electro-osmosis (EO) 18 1.5 Research Configuration 20 Chapter 2 Materials and Methods 22 2.1 Sample Preparation 22 2.1.1 Deionized Water (DI water) 22 2.1.2 Bacterial preparation 22 2.1.3 The Plate 24 2.2 Ring-shaped Interdigitated Electrode Chip (RIDE) Design and Micro-Fabrication 25 2.2.1 Ring-shaped Interdigitated Electrode Chip (RIDE) Design 25 2.2.2 Micro-Fabrication 28 2.3 PDMS Fabrication 34 2.4 Image-Pro and ImageJ 34 2.5 System configuration and RIDE Operating Procedures 34 Chapter 3 Results and Discussion 36 3.1 Optimization of Experimental Process 36 3.2 The Experimental Results for the Urinal Bacteria Sample 40 Chapter 4 Conclusion and Prospects 43 References 44 Personal Information 47

    1. Nicolle, L.E., et al., Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clinical Infectious Diseases, 2005: p. 643-654.
    2. Trautner, B.W., et al., Overtreatment of asymptomatic bacteriuria: identifying provider barriers to evidence-based care. American Journal of Infection Control, 2014. 42(6): p. 653-658.
    3. Choi, K., et al., Smartphone-based urine reagent strip test in the emergency department. Telemed J E Health, 2016.
    4. Kayalp, D., et al., Can routine automated urinalysis reduce culture requests? Clinical Biochemistry, 2013. 46(13): p. 1285-1289.
    5. Foxman, B., The epidemiology of urinary tract infection. Nature Reviews Urology, 2010. 7(12): p. 653-660.
    6. Lillian Mundt EdD MLS(ASCP)SH , K.S.M.M.A., Graff’s Textbook of Routine Urinalysis and Body FluidsThird Edition.
    7. Awonuga, D.O., et al., Asymptomatic bacteriuria in pregnancy: evaluation of reagent strips in comparison to microbiological culture. African Journal of Medicine and Medical Sciences, 2011. 40(4): p. 377-383.
    8. Barbeito, G.A. and M.A. Sampayo, Using urinary strips. Revista De Enfermeria (Barcelona, Spain), 2015. 38(10): p. 10-16.
    9. Marschal, M., et al., Evaluation of 3 different rapid automated systems for diagnosis of urinary tract infections. Diagn Microbiol Infect Dis, 2012. 72(2): p. 125-130.
    10. Hribar, K.C., et al., Light-assisted direct-write of 3D functional biomaterials. Lab Chip, 2014. 14(2): p. 268-275.
    11. Matharu, Z., et al., Mediator free cholesterol biosensor based on self-assembled monolayer platform. Analyst, 2012. 137(3): p. 747-753.
    12. Lee, C.Y., et al., Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosens Bioelectron, 2013. 39(1): p. 133-138.
    13. Chang, W.S., et al., Rapid detection of dengue virus in serum using magnetic separation and fluorescence detection. Analyst, 2008. 133(2): p. 233-240.
    14. Chung, C.C., et al., Screening of antibiotic susceptibility to beta-lactam-induced elongation of Gram-negative bacteria based on dielectrophoresis. Anal Chem, 2012. 84(7): p. 3347-3354.
    15. Eggins, B.R., Chemical sensors and biosensors. Vol. 28. 2008: John Wiley & Sons.
    16. Cetin, B. and D. Li, Dielectrophoresis in microfluidics technology. Electrophoresis, 2011. 32(18): p. 2410-2427.
    17. Nakano, A. and A. Ros, Protein dielectrophoresis: advances, challenges, and applications. Electrophoresis, 2013. 34(7): p. 1085-1096.
    18. Chung, C.-C., et al., Combination of ac electroosmosis and dielectrophoresis for particle manipulation on electrically-induced microscale wave structures. Journal of Micromechanics and Microengineering, 2015. 25(3): p. 035003.
    19. Khoshmanesh, K., et al., Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron, 2011. 26(5): p. 1800-1814.
    20. Mpholo, M., C.G. Smith, and A.B.D. Brown, Low voltage plug flow pumping using anisotropic electrode arrays. Sensors and Actuators B: Chemical, 2003. 92(3): p. 262-268.
    21. Cheng, I.F., et al., Ripple structure-generated hybrid electrokinetics for on-chip mixing and separating of functionalized beads. Biomicrofluidics, 2014. 8(6): p. 061102.
    22. Zhu, H., et al., Screen-printed microfluidic dielectrophoresis chip for cell separation. Biosens Bioelectron, 2015. 63: p. 371-378.
    23. Mohtar, M.N., K.F. Hoettges, and M.P. Hughes, Factors affecting particle collection by electro-osmosis in microfluidic systems. Electrophoresis, 2014. 35(2-3): p. 345-351.
    24. Milagro, A., et al., UTIscreen versus UROQUICK: two semiautomatic systems for bacteriuria detection. Enfermedades Infecciosas y Microbiologia Clinica, 1999. 17(8): p. 398-400.
    25. Gagnon, Z.R., Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis, 2011. 32(18): p. 2466-2487.
    26. Bard, A.J., et al., Electrochemical methods: fundamentals and applications. Vol. 2. 1980: Wiley New York.
    27. Antonio Ramos, Electrokinetics and manipulation of Electrohydrodynamics in Microsystems.CISM, Udine Vol. 530: p.277~278. (2011):Springer Italy.
    28. 王竣弘,“交流電動力操控下的環狀指叉型電極晶片應用於生物粒子濃縮之研究”,生物醫學工程學系,台南市, 國立成功大學,碩士, (2013)︰ 53。
    29. 鐘聖凱,“交流電動力操控下的環狀指叉型電極晶片應用於養殖水體細菌數快速檢測之研究”,生物醫學工程學系,台南市,國立成功大學,碩士, (2014)︰59。
    30. 吳俊忠等合著,“臨床微生物學︰ 細菌與黴菌學”,臺北市: 五南 -二版(2008),34&45~47。
    31. 朱敬儀等合著,“新編微生物學”華格那企業–初版,臺中市,(2008.06),4-10~4-15。

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE