簡易檢索 / 詳目顯示

研究生: 李世揚
Lee, Shih-Yang
論文名稱: 熱力學計算輔助高錳高鋁鋼連鑄鑄粉開發
CALPHAD thermodynamic modeling-assisted development of continuous casting mold flux for high-Mn high-Al steels
指導教授: 林士剛
Lin, Shih-Kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 124
中文關鍵詞: 先進高強度鋼連續鑄造鑄粉CaO-Al2O3CALPHAD界面反應
外文關鍵詞: CaO-Al2O3 based mold flux, CALPHAD, interfacial reaction
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先進高強度鋼相較於傳統鋼材具有更高延展性及降伏強度,為近年來各鋼廠重點發展鋼種,然而其成分包含Al、Mn等,連續鑄造時容易與傳統鑄粉中之主成份SiO2產生氧化還原反:4[Al] + 3(SiO2) = 3[Si] + 2(Al2O3),使得鋼材與鑄粉成份變異,並產生鑄胚破裂、清淨度變差、表面裂痕等缺陷。
      因應高錳高鋁鋼之生產需求,本研究利用計算與實驗開發適合用於高錳高鋁鋼連續鑄造使用之鑄粉,針對鑄粉熔點、結晶傾向、反應性三大面向篩選適合用於高錳高鋁鋼連鑄使用之鑄粉成份。不同於以往鑄粉相關研究都是以打點式或試誤法進行實驗,本研究是由熱力學資料庫中數千種組合尋找最佳解,先以計算得到最佳解後再進行實驗驗證,大幅減少傳統研究方法所花費的金錢與時間。
      熱力學計算結果顯示,CaO-Al2O3-B2O3三元系統鑄粉可以在反應前後都滿足低熔點、低結晶傾向之要求,深入探究此三元系統後發現含5-20 % B2O3且(CaO)/(Al2O3)=0.9-3.3的區域可以同時符合低熔點、低結晶傾向之要求,因此本研究以此區域中之組成進行黏度分析、熱分析、結晶度分析以及鋼液/鑄粉界面反應實驗。
      實驗結果顯示,CaO-Al2O3-B2O3三元系統鑄粉之黏度、熔點溫度、結晶性、反應性皆滿足連鑄生產要求。綜合考慮鑄粉的熔點、結晶性、反應性與黏度,37.75 wt. % Al2O3-19 wt. % B2O3-43.25 wt. % CaO為最適當之選擇,若應用於實際生產可再添加適當助熔劑如Na2O優化其熔點溫度及黏度。

    Advanced high strength steels (AHSSs) have better ductility and higher yield strength compared with conventional low alloy steels which catch everyone’s eyes recently. However, AHSSs have appreciable amount of alloying elements such as Al and Mn, are tend to react with mold flux. Due to these reactions, several manufacturing issues such as breakout, poor surface quality and sticking on hot slabs have been caused. To solve these problems, we developed new mold flux by CALPHAD thermodynamic modeling and several experiments. Differs from the past, we designed the most possible components by CALPHAD thermodynamic modeling and verifying it by experiments. With the aid of CALPHAD thermodynamic modeling, we found a region in CaO-Al2O3-B2O3 ternary system which satisfied all the criteria including low melting temperature, low crystallinity tendency and low reactivity. The experimental results also show good performances. Based on the experimental data, these new designed mold flux are less reactive with Al during continuous casting. As for its physico-chemical properties, experimental data also show low melting temperature, low crystallinity and good viscosity. In conclusion, Al2O3-CaO-B2O3 ¬ternary system is a good composition to be mold flux for AHSSs, while further fluxing agents need to be added for real industrial applications.

    摘要 I Abstract II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIV 第一章 前言 1 第二章 文獻回顧 2 2.1 先進高強度鋼 2 2.2 連續鑄造生產法 4 2.3 連續鑄造鑄粉 6 2.3.1 鑄粉的熱傳與潤滑性質 10 2.4 高鋁鋼連鑄鑄粉 11 2.4.1 CaO-SiO2系列鑄粉 12 2.4.2 CaO-Al2O3系列鑄粉 16 2.4.3 高鋁鋼連鑄鑄粉專利現況 25 第三章 研究方法 28 3.1 熱力學計算方法 29 3.1.1 計算設計鑄粉成份 32 3.1.2 高錳高鋁鋼鋼液/熔融鑄粉反應動力學計算 41 3.1.3 實際連鑄開放系統模擬 44 3.2 實驗材料 48 3.2.1 高錳高鋁鋼 48 3.2.2 鑄粉原料 48 3.3 實驗設備 49 3.3.1 高週波感應爐實驗裝置 49 3.3.2 熱重熱示差同步熱分析儀 52 3.3.3 旋轉黏度計 53 3.3.4 X-光繞射儀 54 3.4 實驗流程 55 3.4.1 高錳高鋁鋼及鑄粉前處理 55 3.4.2 高錳高鋁鋼鋼液/熔融鑄粉界面反應實驗 56 3.4.3 高錳高鋁鋼及鑄粉性質分析 58 第四章 結果與討論 61 4.1 計算驗證文獻結果 61 4.2 熱力學計算設計鑄粉成份 64 4.2.1 熔點計算 64 4.2.2 結晶性計算 69 4.2.3 鑄粉成份決定 73 4.3 鑄粉預熔處理 77 4.4 高錳高鋁鋼鋼液/鑄粉界面反應 79 4.4.1 高錳高鋁鋼鋼液/鑄粉界面反應之鋼液成份變化 79 4.4.2 高錳高鋁鋼鋼液/鑄粉界面反應之鑄粉成份變化 84 4.5 實際連鑄開放系統模擬 88 4.6 鑄粉性質分析 90 4.6.1 黏度分析結果 90 4.6.2 熱分析結果 95 4.6.3 X-射線繞射分析結果 104 4.6.4 鑄粉微結構分析 109 4.6.5 鑄粉性質綜合討論 116 第五章 結論 118 第六章 參考文獻 119

    第六章 參考文獻
    1. Grässel, O., L. Krüger, G. Frommeyer, and L. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. International Journal of plasticity, 2000. 16(10): p. 1391-1409.
    2. Mills, K.C. and A.B. Fox, The role of mould fluxes in continuous casting-so simple yet so complex. ISIJ international, 2003. 43(10): p. 1479-1486.
    3. Bale, C., E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, and J. Melançon, FactSage thermochemical software and databases, 2010–2016. Calphad, 2016. 54: p. 35-53.
    4. De Cooman, B., Structure–properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science, 2004. 8(3): p. 285-303.
    5. Steel Production Flow Chart. 2017; Available from: http://www.csc.com.tw/csc/pd/prs.htm.
    6. 干勇, 唐紅偉, and 仇聖桃, 連續鑄鋼在鋼鐵生產流程中的作用及現代連鑄技術簡介. 中國科學, 2008. 38(9): p. 1384-1390.
    7. 王淼, 冶金企業中連鑄設備的概況與發展. Science&Technology for Development, 2012: p. 85-86.
    8. Kang, Y.-B., M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park, and H.-G. Lee, A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part II. Reaction Mechanism, Interface Morphology, and Al2O3 Accumulation in Molten Mold Flux. Metallurgical and Materials Transactions B, 2012. 44(2): p. 309-316.
    9. Kim, M.-S., S.-W. Lee, J.-W. Cho, M.-S. Park, H.-G. Lee, and Y.-B. Kang, A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part I. Composition Evolution in Molten Mold Flux. Metallurgical and Materials Transactions B, 2012. 44(2): p. 299-308.
    10. Bale, C., P. Chartrand, S. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A. Pelton, and S. Petersen, FactSage thermochemical software and databases. Calphad, 2002. 26(2): p. 189-228.
    11. Fonstein, N., Advanced High Strength Sheet Steels. 2015, Springer.
    12. Granbom, Y., Structure and mechanical properties of dual phase steels: An experimental and theoretical analysis. 2010, KTH.
    13. Aydin, H., E. Essadiqi, I.-H. Jung, and S. Yue, Development of 3rd generation AHSS with medium Mn content alloying compositions. Materials Science and Engineering: A, 2013. 564: p. 501-508.
    14. Matlock, D.K. and J.G. Speer, Third generation of AHSS: microstructure design concepts, in Microstructure and texture in steels. 2009, Springer. p. 185-205.
    15. Zhang, Y., Y. Ma, Y. Kang, and H. Yu, Mechanical properties and microstructure of TRIP steels produced using TSCR process. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2006. 13(5): p. 416-419.
    16. Mills, K., A. Fox, Z. Li, and R. Thackray, Performance and properties of mould fluxes. Ironmaking & steelmaking, 2005. 32(1): p. 26-34.
    17. Mills, K.C., S. Karagadde, P.D. Lee, L. Yuan, and F. Shahbazian, Calculation of Physical Properties for Use in Models of Continuous Casting Process-Part 1: Mould Slags. ISIJ International, 2016. 56(2): p. 264-273.
    18. Higo, T., S. Sukenaga, K. Kanehashi, H. Shibata, T. Osugi, N. Saito, and K. Nakashima, Effect of Potassium Oxide Addition on Viscosity of Calcium Aluminosilicate Melts at 1673–1873 K. ISIJ International, 2014. 54(9): p. 2039-2044.
    19. Yu, X., G.H. Wen, P. Tang, and H. Wang, Investigation on viscosity of mould fluxes during continuous casting of aluminium containing TRIP steels. Ironmaking & Steelmaking, 2009. 36(8): p. 623-630.
    20. Wang, H., P. Tang, G.H. Wen, and X. Yu, Effect of Na2O on crystallisation behaviour and heat transfer of high Al steel mould fluxes. Ironmaking & Steelmaking, 2013. 38(5): p. 369-373.
    21. Kim, G.-H., C.-S. Kim, and I. Sohn, Viscous Behavior of Alumina Rich Calcium-Silicate Based Mold Fluxes and Its Correlation to the Melt Structure. ISIJ International, 2013. 53(1): p. 170-176.
    22. Wu, T., Q. Wang, S. He, J. Xu, X. Long, and Y. Lu, Study on Properties of Alumina-Based Mould Fluxes for High-Al Steel Slab Casting. steel research international, 2012. 83(12): p. 1194-1202.
    23. Lu, B., W. Wang, J. Li, H. Zhao, and D. Huang, Effects of Basicity and B2O3 on the Crystallization and Heat Transfer Behaviors of Low Fluorine Mold Flux for Casting Medium Carbon Steels. Metallurgical and Materials Transactions B, 2012. 44(2): p. 365-377.
    24. Park, J.H., The effect of boron oxide on the crystallization behavior of MgAl2O4 spinel phase during the cooling of the CaO-SiO2-10 mass.% MgO-30 mass.%Al2O3 systems. Metals and Materials International, 2010. 16(6): p. 987-992.
    25. Jung, S.S. and I. Sohn, Crystallization Behavior of the CaO-Al2O3-MgO System Studied with a Confocal Laser Scanning Microscope. Metallurgical and Materials Transactions B, 2012. 43(6): p. 1530-1539.
    26. Jiang, B., W. Wang, I. Sohn, J. Wei, L. Zhou, and B. Lu, A Kinetic Study of the Effect of ZrO2 and CaO/Al2O3 Ratios on the Crystallization Behavior of a CaO-Al2O3-Based Slag System. Metallurgical and Materials Transactions B, 2014. 45(3): p. 1057-1067.
    27. 蘇彥豪, 常見商用鑄粉及其性質. 2016: 中國鋼鐵公司.
    28. Mills, K.C., Structure and Properties of Slags Used in the Continuous Casting of Steel: Part 1 Conventional Mould Powders. ISIJ International, 2016. 56(1): p. 1-13.
    29. Mills, K.C., Structure and properties of slags used in the continuous casting of steel: part 2 specialist mould powders. ISIJ International, 2016. 56(1): p. 14-23.
    30. Nakada, H., H. Fukuyama, and K. Nagata, Effect of NaF addition to mold flux on Cuspidine primary field. ISIJ international, 2006. 46(11): p. 1660-1667.
    31. Thomas, B.G., Modeling of the continuous casting of steel—past, present, and future. Metallurgical and Materials Transactions B, 2002. 33(6): p. 795-812.
    32. Shi, C.-B., M.-D. Seo, H. Wang, J.-W. Cho, and S.-H. Kim, Crystallization Kinetics and Mechanism of CaO–Al2O3-Based Mold Flux for Casting High-Aluminum TRIP Steels. Metallurgical and Materials Transactions B, 2014. 46(1): p. 345-356.
    33. Sridhar, S., K.C. Mills, O.D.C. Afrange, H.P. Lörz, and R. Carli, Break temperatures of mould fluxes and their relevance to continuous casting. Ironmaking & Steelmaking, 2013. 27(3): p. 238-242.
    34. Cho, J.-W., K. Blazek, M. Frazee, H. Yin, J.H. Park, and S.-W. Moon, Assessment of CaO–Al2O3 Based Mold Flux System for High Aluminum TRIP Casting. ISIJ International, 2013. 53(1): p. 62-70.
    35. Fu, X., G. Wen, Q. Liu, P. Tang, J. Li, and W. Li, Development and Evaluation of CaO-SiO2Based Mould Fluxes for Casting High Aluminum TRIP Steel. steel research international, 2015. 86(2): p. 110-120.
    36. Wang, W., B. Lu, and D. Xiao, A Review of Mold Flux Development for the Casting of High-Al Steels. Metallurgical and Materials Transactions B, 2015. 47(1): p. 384-389.
    37. Kim, H. and I. Sohn, Effect of CaF2 and Li2O additives on the viscosity of CaO–SiO2–Na2O slags. ISIJ international, 2011. 51(1): p. 1-8.
    38. Zhang, Z., G. Wen, P. Tang, and S. Sridhar, The influence of Al2O3/SiO2 ratio on the viscosity of mold fluxes. isiJ international, 2008. 48(6): p. 739-746.
    39. Kim, D.J. and J.H. Park, Interfacial Reaction Between CaO-SiO2-MgO-Al2O3 Flux and Fe-xMn-yAl (x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) Steel at 1873 K (1600 °C). Metallurgical and Materials Transactions B, 2012. 43(4): p. 875-886.
    40. Wang, H., Study on Crystallization Behaviors and Heat Transfer of High Al steel Mould Fluxes. 2010, Chongqing University: Chongqing.
    41. Park, J., S. Sridhar, and R.J. Fruehan, Kinetics of Reduction of SiO2 in SiO2-Al2O3-CaO Slags by Al in Fe-Al (-Si) Melts. Metallurgical and Materials Transactions B, 2014. 45(4): p. 1380-1388.
    42. Lu, B. and W. Wang, Effects of Fluorine and BaO on the Crystallization Behavior of Lime–Alumina-Based Mold Flux for Casting High-Al Steels. Metallurgical and Materials Transactions B, 2015. 46(2): p. 852-862.
    43. Blazek, K., H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee, Development and evaluation of lime alumina-based mold powders for casting high-aluminum TRIP steel grades. AIST Trans, 2011. 8: p. 232-240.
    44. Kim, G.H. and I. Sohn, Role of B2O3 on the Viscosity and Structure in the CaO-Al2O3-Na2O-Based System. Metallurgical and Materials Transactions B, 2013. 45(1): p. 86-95.
    45. Wang, W., K. Blazek, and A. Cramb, A study of the crystallization behavior of a new mold flux used in the casting of transformation-induced-plasticity steels. Metallurgical and materials transactions B, 2008. 39(1): p. 66-74.
    46. Masaki, N., K. Toshihiro, and H. Hiroshi, Powder for continuous casting of high-Si and high-Al steel and continuous casting method, 2011, Japan, Patent No. 2011-218411,JPO,N.S. Corp.
    47. Kazuhisa, T., Y. Yasuo, H. Koji, M. Akira, and F. Yasuyuki, Mold flux for continuously casting steel having high Al, Y and REM contents, 2003, Japan, Patent No. 2003-181606,JPO,N.S.M.P.C. Ltd and N.S. Corp.
    48. Kazuhisa, T., Y. Yasuo, I. Yoshihiro, H. Koji, M. Akira, and F. Yasuyuki, Mold flux for continuously casting steel having high Al content, 2003, Japan, Patent No. 2003-181607,JPO,N.S.M.P.C. Ltd and N.S. Corp.
    49. Rei, T., H. Toshiaki, and U. Kazuo, Method for continuously casting high Al-containing steel, 2010, Japan, Patent No. 2010-042421,JPO,S.S.S.C. Ltd.
    50. 王謙, 何生平, 吳婷, 徐建飛, and 楊穎, 一種高鋁鋼連鑄用結晶器保護渣, 2011, 中國, Patent No. CN 102389955A,中華人民共和國國家知識產權局,重慶大學.
    51. 張宇斌, 崔天燮, 陳景峰, 曹永靈, 秦潔, 張增武, and 辛建卿, 高鋁高錳型無磁鋼結晶器保護渣及其製造方法, 2011, 中國, Patent No. CN106424622A,中華人民共和國國家知識產權局,山西太鋼不鏽鋼股份有限公司.
    52. 仇聖桃, 王強, 朱果靈, 劉志宏, 胡坤太, 張興中, and 趙沛, 一種高Al2O3含量高鋁鋼連鑄保護渣, 2012, 中國, Patent No. CN102764866A,中華人民共和國國家知識產權局,鋼鐵研究總院.
    53. 李明, 吳年春, 尹雨群, 黨軍, 殷浩, 張邈, and 張文明, 一種高鋁鋼模鑄保護渣, 2012, 中國, Patent No. CN102764879A,中華人民共和國國家知識產權局,南京鋼鐵股份有限公司.
    54. 王萬林, 周樂君, 朱晨陽, 李歡, 張磊, and 江斌斌, 一種新型含Mn、Al鋼保護渣及其應用 2016, 中國, Patent No. CN106111928,中華人民共和國國家知識產權局,中南大學.
    55. 劉欣隆, 孫樹森, 周四明, and 張珍珠, 高鋁鋼用連鑄保護渣及其製備方法 2017, 中國, Patent No. CN106424622A,中華人民共和國國家知識產權局,湛江盛寶科技有限公司.
    56. 林士剛, 歐冠伶, 蘇彥豪, and 陸木榮, 用於高鋁鋼之鑄造的鑄粉, 2016, 中華民國, Patent No. I537230,中華民國經濟部智慧財產局,中國鋼鐵股份有限公司.
    57. Liu, Z.-K., First-principles calculations and CALPHAD modeling of thermodynamics. Journal of phase equilibria and diffusion, 2009. 30(5): p. 517.
    58. Dinsdale, A.T., SGTE data for pure elements. Calphad, 1991. 15(4): p. 317-425.
    59. Redlich, O. and A. Kister, Thermodynamics of Nonelectrolyte Solutions-xyt relations in a Binary System. Industrial & Engineering Chemistry, 1948. 40(2): p. 341-345.
    60. Bai, H.Y., C. Michaelsen, C. Gente, and R. Bormann, Amorphization by mechanical alloying in metallic systems with positive Gibbs energy of formation. Physical Review B, 2001. 63(6): p. 064202.
    61. Schwarz, R.B. and W.L. Johnson, Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals. Physical Review Letters, 1983. 51(5): p. 415-418.
    62. Sun, H. and K. Mori, Oxidation rate of aluminum in molten iron by CaO-SiO2-Al2O3-FeO-MnO slag. ISIJ international, 1996. 36(Suppl): p. S34-S37.
    63. Sahai, Y. and R. Guthrie, Hydrodynamics of gas stirred melts: Part I. Gas/liquid coupling. Metallurgical Transactions B, 1982. 13(2): p. 193-202.
    64. 蘇彥豪, 連鑄製程基本參數. 2016: 中國鋼鐵公司.
    65. 蘇彥豪, 5S876鋼/M1鑄粉連鑄時鑄粉成份變化. 2015: 中國鋼鐵公司.
    66. 歐冠伶, 鑄粉中氧化鋁及氧化錳含量對連鑄高錳高鋁鋼的影響, in 材料科學及工程學系. 2015, 成功大學.
    67. Netzsch, Steel (low-alloyed steel). 2006; Available from: https://www.netzsch-thermal-analysis.com/en/.
    68. Sridhar, S., K. Mills, O. Afrange, H. Lörz, and R. Carli, Break temperatures of mould fluxes and their relevance to continuous casting. Ironmaking & steelmaking, 2000. 27(3): p. 238-242.
    69. Zheng, K., T.-c. Zhang, P. Lin, Y.-h. Han, H.-y. Li, R.-j. Ji, and H.-y. Zhang, 4-Nitroaniline Degradation by TiO2 Catalyst Doping with Manganese. Journal of Chemistry, 2015. 2015.
    70. Shu, Q., P. Li, X. Zhang, and K. Chou, Thermodynamics and structure of CaO-Al2O3-3 mass pct B2O3 Slag at 1773 K (1500° C). Metallurgical and Materials Transactions B, 2016. 47(6): p. 3527-3532.
    71. Huang, X.H., J.L. Liao, K. Zheng, H.H. Hu, F.M. Wang, and Z.T. Zhang, Effect of B2O3 addition on viscosity of mould slag containing low silica content. Ironmaking & Steelmaking, 2013. 41(1): p. 67-74.
    72. Zhang, L., W. Wang, S. Xie, K. Zhang, and I. Sohn, Effect of basicity and B2O3 on the viscosity and structure of fluorine-free mold flux. Journal of Non-Crystalline Solids, 2017. 460: p. 113-118.
    73. Thomas, L.C., Use of multiple heating rate DSC and modulated temperature DSC to detect and analyze temperature-time-dependent transitions in materials. American Laboratory, 2001. 33(1): p. 26-31.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE