簡易檢索 / 詳目顯示

研究生: 劉瀚隆
Liu, Han-Lung
論文名稱: 未摻雜與Mg,Cr摻雜La1-yCayFe1-XCoXO3之晶體結構,導電率及結構穩定性之研究
Crystal Structure, conductivity, and phase stability of undoped and Mg,Cr-doped La1-yCayFe1-XCoXO3 perovskite
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 91
中文關鍵詞: 鑭鈣鐵鈷氧化物鈣鈦礦結構氧化物
外文關鍵詞: LCFC oxides, Perovskite structure oxide
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • La1-yCayFe1-XCoXO3為離子-電子混和導體的陶瓷材料,是以LaFeO3當作基材進行共摻雜鈣與鈷所形成,可作為碳氫化合物燃料及高經濟價值化學品生產之催化劑,或是應用於前瞻性甲烷部分氧化技術,因為LaFeO3在低氧分壓環境下結構較穩定,早期就有研究用於部分甲烷轉換技術,近幾年有以鍶與鈷摻雜進行改質,當作燃料電池的陰極;或以鈣與鈷摻雜進行改質當作離子傳輸薄膜元件。
    本研究選取與鑭(CN=12, =1.36Å)離子半徑相近的鈣(CN=12, =1.34Å)和鈷當作摻雜的離子,並改變摻雜的量觀察鈣與鈷摻雜對於LaFeO3的晶體結構及導電率的影響。氧化鑭與氧化鐵混合粉末於1200℃煆燒6小時後,形成近似正方相(斜方相)的鈣鈦礦結構。當A-site摻雜鈣的量為20%時,結構仍為近似正方相的鈣鈦礦結構,若繼續在B-site摻雜鈷從20%~60%結構維持近似正方相的鈣鈦礦結構,鈷摻雜量達80%時,煆燒後試樣結構由近似正方相變成菱方相的鈣鈦礦結構。
    具鈣鈦礦結構的氧化物LaFeO3在空氣下800℃的導電率只有0.033S/cm,因此以摻雜鈣與鈷的方式提升導電性質,La0.8Ca0.2FeO3在800℃的導電率為90.63 S/cm ,再隨著鈷的添加量為20%~80%時,導電率皆隨鈷添加量與溫度增加而提升,La0.8Ca0.2CoO3在500℃導電率則會下降。
    La0.8Ca0.2Fe1-XCoXO3(X=0~0.4)在氫氣還原氣氛下,會分解成氧化鑭、金屬鐵與金屬鈷,結構不穩定,導電率迅速衰退;在甲烷氣氛下時,La0.8Ca0.2Fe0.8Co0.2O3有較高的導電率約20S/cm。添加穩定元素鉻改善鑭鈣鐵鈷氧化物結構穩定性,在氫氣下La0.8Ca0.2Fe0.8Co0.16 Cr0.04O3比La0.8Ca0.2Fe0.8Co0.1Cr0.1O3有較好的導電率4.33S/cm,鉻的量增加效果反而不好。添加穩定元素鎂也能改善鑭鈣鐵鈷氧化物結構穩定性,在氫氣下La0.8Ca0.2Fe0.8Co0.1Mg0.1O3的導電率為6.2S/cm 比La0.8Ca0.2Fe0.8Co0.16 Mg0.04O3的導電率3.6S/cm高,是由於二價鎂是很難變價,所以穩定性會提升。

    La1-yCayFe1-XCoXO3 is the ceramic material of mixed ionic and electronic conductors. LaFeO3 is chosen as the baseline material with calcium substitution for the lanthanum site and cobalt on the iron site in order to form La1-yCayFe1-XCoXO3. It can be used as membrane of partial oxidation of hydrocarbon fuel or high-valued chemical production. Because LaFeO3 has the stable structure in low partial pressure of oxygen, it has been used for partial oxidation reaction. Recently, Sr and Co-doped lanthanum iron oxide have been used as cathode of SOFC or Ca and ion transport membrane .
    In this study, the calcium ion was selected to substitute lanthanum ion due to the similarity in ionic radius and cobalt ion was selected to substitute for iron ion. The addition of calcium ion and cobalt ion were varied to observe the influence on crystal structure and conductivity. The powder mixture of lanthanum oxide and iron oxide were calcined at 1200oC for 6h. The crystal structure of LaFeO3 showed orthorhombic structure which was confirmed by XRD analysis. The additive amount of calcium ion substituted A-site ion was 20% the crystal structure still formed orthorhombic structure. In addition, cobalt ion doping of B-site from 20% to 60% the crystal structure maintained orthorhombic structure . With increasing amount of cobalt doping up to 80% the crystal structure changed from orthorhombic to rhombohedral structure .
    The conductivity of pure lanthanum iron oxide with perovskite structure was only 0.033S/cm at 800℃ in air. LaFeO3 was considered to be an insulator due to its low conductivity mentioned above. The common method of increasing conductivity was by calcium and cobalt ion doping. The conductivity of La0.8Ca0.2FeO3 at 800℃ in air was measured to be 90.63/cm. With the additive amount of cobalt ion from 20% to 80%, conductivity would be raising with increasing cobalt and temperature. The conductivity of La0.8Ca0.2CoO3 would decrease after 500℃.
    In hydrogen reducing atmosphere, La0.8Ca0.2Fe1-XCoXO3(X=0~0.4) would decompose to be La2O3,metallic iron and metallic cobalt.The conductivity decreased rapidly. In methane atmosphere , La0.8Ca0.2Fe0.8Co0.2O3 had the higher conductivity than others. The structure stability of LCFC oxide may be improved by adding stable element chromium. Under the hydrogen reducing atmosphere, La0.8Ca0.2Fe0.8Co0.16Cr0.04O3 possessed better conductivity 4.33S/cm than La0.8Ca0.2Fe0.8Co0.1Cr0.1O3.The structure stability of LCFC oxide may be also improved by adding stable element magnesium. Under hydrogen atmosphere, La0.8Ca0.2Fe0.8Co0.1Mg0.1O3 possessed conductivity of 6.2S/cm which is higher than La0.8Ca0.2Fe0.8Co0.16Mg0.04O3 (3.6S/cm).

    摘要 I Abstract III 致謝 V 圖目錄 IX 表目錄 XIV 第 一 章 緒論 1 第 二 章 理論基礎與文獻回顧 3 2-1氧離子傳輸薄膜在能源上的機制與應用 3 2-2具有氧離子傳輸功能之陶瓷材料 6 2-2-1氧離子導體材料 6 2-2-2混合離子導體材料 7 2-3鈣鈦礦結構(Perovskite ABO3) 8 2-3-1鈣鈦礦結構概述 8 第 三 章 研究動機與目的 10 第 四 章 實驗方法與步驟 12 4-1實驗流程 12 4-2實驗藥品 15 4-3固相反應法製備粉末 16 4-3-1La0.8Ca0.2Fe1-XCoXO3粉末的合成 16 4-3-2 La0.8Ca0.2Fe1-X- ZCoXMZO3(M=Mg,Cr)粉末合成 17 4-4材料特性分析 18 4-4-1X射線繞射(XRD)分析 18 4-4-2二次電子顯微鏡(SEM)分析 18 4-4-3導線性量測-四點量測 19 4-4-4X光光電子能質譜儀 (X-ray photoelectron spectrometer XPS)分析 20 4-4-5孔隙率量測 21 第 五 章 結果與討論 22 5-1 La1-yCayFe1-XCoXO3(y=0,0.2 X=0~1)結構分析 22 5-1-1Co摻雜量對La1-yCayFe1-XCoXO3晶體結構之影響 22 5-2 La1-yCayFe1-XCoXO3(y=0,0.2 X=0~1)導電性質 31 5-2-1四點量測導電性質 31 5-3以XPS分析La0.8Ca0.2Fe1-XCoXO3(X=0~0.4)價數 36 5-4 La0.8Ca0.2Fe1-XCoXO3(0~0.4)在還原氣氛下材料性質 44 5-4-1在10%氫氣下對La0.8Ca0.2Fe1-XCoXO3(X=0~0.4)晶體結構之影響 44 5-4-2在10%氫氣下對La0.8Ca0.2Fe1-XCoXO3(X=0~0.4)顯微結構觀察 49 5-4-3在氫氣下導電性質變化量測 55 5-4-4在20%甲烷下對La0.8Ca0.2Fe1-XCoXO3(X=0~0.4)晶體結構之影響 57 5-4-5在 20%甲烷下對La0.8Ca0.2Fe1-XCoXO3(X=0~0.4)顯微結構觀察 60 5-4-6在甲烷下導電性質變化量測 64 5-4-7摻雜鎂、鉻對La0.8Ca0.2Fe1-XCoXO3結構穩定性之影響 66 5-4-7-1鎂、鉻添加劑對La0.8Ca0.2Fe1-XCoXO3晶體結構之影響 66 5-4-7-2鎂、鉻添加劑對La0.8Ca0.2Fe1-XCoXO3導電行為之影響 71 5-4-7-3鎂、鉻添加劑對La0.8Ca0.2Fe1-XCoXO3還原氣氛下穩定性之影響 73 第 六 章 結論 85 參考文獻 88

    1. Carbon Monitoring for Action, CARMA, http://carma.org/
    2. P. N. Dyer , R. E. Richards, S. L. Russek, D. M. Taylor, Solid State Ionics 134 (2000) 21–33
    3. Y. Liu, , X.Y. Tan, K. Li, Catalysis Reviews, 4 8(2006), 145-198
    4. C.Y. Tsai, A.G. Dixon, W.R. Moser, Y.H. Ma, Ceramics Processing 43 (1997) 2741-2750
    5.陳裕昌:“以改良之Ni-Mg-Al類水滑石型觸媒催化二氧化碳的甲烷
    氧化重組反應”,國立成功大學化學工程學系碩士論文,(2008)
    6. F. Bidrawn, S. Lee, J. M. Vohs, and R. J. Gorte, J. Electrochem. Soc., 155 (2008), B660
    7. M.H. Hung, M. V. M. Rao, and D.-S. Tsai, Mater. Chem. Phys., 101 (2007), 297
    8. P. Zink, K. J. Yoon, W. Huang, U. B. Pal, and S. Gopalan, ECS Trans., 7 (2007) 399
    9. P. Ciambelli, S. Cimino, L. Lisi, M. Faticanti, G. Minelli, I. Pettiti, and P. Porta, Appl. Catal.,B, 33,( 2001) 193
    10. V. A. Sadykov, L. A. Isupova, I. S. Yakovleva, G. M. Alikina, A. I. Lukashevich, and S.Neophytides, React. Kinet. Catal. Lett., 81, (2004) 393
    11. B. P. Barbero, J. A. Gamboa, and L. E. Cadús, Appl. Catal., B, 65,(2006) 21
    12. J. Pérez-Ramírez and B. Vigeland, Catal. Today, 105, (2005) 436
    13. L.-B. Kong and Y.-S. Shen, Sens. Actuators B, 30, (1996) 217
    14. H.L. Tuller, J. Schoonman, I. Riess, (2000) Oxygen Ion and Mixed Conductors and TheirTechnological Applications; Kluwer Academic: Dordrecht, The Netherlands
    15.V.M.Goldschmidt, Skrifter Norske Videnskaps-Akad. Oslo, I. Mat.-Naturv Klasse, 8, (1926)
    16.O.Muller, R.Roy, The Major Ternary Structural Families, Springer-Verlag press, New York, 221, (1974)
    17. S. Diethelm, J. Van herle, P.H. Middleton, D. Favrat, Journal of Power Sources 135 (2003)270-275
    18. C.Y. Tsai,A.G. Dixon, Y.H. Ma, W.R. Moser, M.R. Pascucci Journal of the America Ceramic Society., 81 (1998) 1437–1444
    19. D. Bayraktar, F. Clemens, S. Diethelm, T. Graule, J. Van herle, P. Holtappels, Journal of European Ceramic Society 27 (2007) 2455-2461.
    20. H.L. Tuller, J. Schoonman, I. Riess, (2000) Oxygen Ion and Mixed Conductors and Their Technological Applications; Kluwer Academic: Dordrecht, The Netherlands
    21. G. Pecchi, M.G. Jiliberto, E.J. Delgado, L.E. Cad´ us and J.L.G. Fierro, J Chem Technol Biotechnol 2011; 86: 1067–1073, Society of Chemical Industry
    22. K.Tabata, S.Kohiki, Journal of Material Science, 22, 3781, (1987)
    23. Xiaoping Dai, Changchun Yu, Qiong Wu, Journal of Natural Gas Chemistry,17(2008)415–418
    24. S. Uhlenbruck, F. Tietz, Materials Science and Engineering ,B107 (2004) 277–282
    25. L.-W. Tai , M.M. Nasrallah , H.U. Anderson‘, D.M. Sparlin , S.R. Sehlin’,Solid State Ionics 76 ( 1995) 259-271
    26. L.-W. Tai, M.M. Nasrallah, H.U. Anderson‘, D.M. Sparlin, S.R. Sehlin, Solid State Ionics 76 ( 1995) 273-283
    27. Niladri Dasgupta, R. Krishnamoorthy, K. Thomas Jacob, Materials Science and Engineering B90 (2002) 278_/286
    28. P. M. Raccah and J. B. Goodenough, Journal of Solid State Chemistry, 1973
    29. R. R. Heikes, R. C. Miller, and R. Mazelsky, Physica 30,1600-1608(1964)
    30. V. G. Bhide, D. S, Rajoria, and Y. S. Beddy and G. Rama Rao, G. V. Subba Rao, and C. N. R. Rao, Physical Rkvikw Lkttkrs 24 April 1972
    31. H.-M. Zhang, N. Yamazoe, Journal of Materials Science Letters 8 (1989) 995 996
    32. P. M. Raccah and J. B. Goodenough, Phys. Rev. 155,982 (1967).
    33. G. H. Jonker, Philips Bes. Bep. 24, 1 (1969).
    34. R. B. Heikes, R. C. Miller, and R. Mazelsky, Physica(Utrecht) 30, 1600 (1964).
    35. C.Zener, Physical Review, 82, 440, (1951)
    36. G.H.Jonker, J.H.Van Santen, Physica, 16, 337, (1950)
    37. JOHN B. GOODENOUGH, J. Phys. Chw. Solids Pergamon Press 1958. Vol. 6. pp. 287-297.

    38.L-W.Tai, M. M. Nasrallah, and H. U. Anderson, Journal of solid state chemistry 118, 117-124(1995)
    39. P. M. Raccah and J. B. Goodenough, Journal of Solid State Chemistry, 1973
    40. P. Ciambelli a, S. Cimino b, L. Lisi c, M. Faticanti d, G. Minelli d, I. Pettiti d, P. Porta d, Applied Catalysis B: Environmental 33 (2001) 193–203
    41. L.A. Isupova, I.S. Yakovlevaa, I.I. Gainutdinov, Yu.T. avlyukhin
    and V.A. Sadykov, Reaction Kinetics and Catalysis Letters Vol. 81, No. 2, 373-382(2004)
    42. J.Mendialdua, R.Casanova, Y.Barbaux, Journal of Electron Spectroscopy and Related Phenomena, 71, 249, (1995)
    43. T. Fujii, D. Alders, F.C. Voogt, T. Hibma, B.T. Thole, G.A. Sawatzky, Surface Science 366 (1996) 579-586
    44. S. Hijfner and G.K. Wertheim, Physics Letters
    45. B. Mayer, S. M¨ahl, M. Neumann, Z. Phys. B 101, 85–90 (1996)
    46. J.C. Fuggle and Z. Zo~nierek ,Solid State Communications, Voi.38, pp.799-802.
    47. L.C. Davis and L.A. Feldkamp, Solid State Communications, Vol. 34, pp. 141-145.
    48. Shiguang Li, Wanqin Jin, Pei Huang, Nanping Xu, and Jun Shi, Ind. Eng. Chem. Res. 1999, 38, 2963-2972
    49. L-W. Tai,M.M. Nasrallah,H.U. Anderson, Journal of Solid State Chemistry,118 117-124(1995)
    50. Nestor Escalona, Soledad Fuentealba, Gina Pecchi, Applied Catalysis A: General 381 (2010) 253–260
    51. Elena Konysheva and John T. S. Irvine, Chem. Mater. 2009, 21, 1514–1523
    52. M.R. Goldwasser, M.E. Rivas, M.L. Lugo, E. Pietri, J. Pe´rez-Zurita,
    M.L. Cubeiro, A. Griboval-Constant, G. Leclercq, Catalysis Today 107–108 (2005) 106–113
    53. Sherman J. Xu and William J. Thomson, Ind. Eng. Chem. Res. 1998, 37, 1290-1299
    54. Katsura, T.; Kitayama, K.; Sugihara, T.; Kimizuka, N. Thermochemical Properties of Lanthanoid-Perovskite at High Temperatures.Bull. Chem. Soc. Jpn. 1975, 48, 1809.
    55. Katsura, T.; Sekine, T.; Kitayama, K.; Sugihara, T.; Kimizuka,N. Thermodynamic Properties of Fe-Lanthanoid-O compounds
    at High Temperatures. J. Solid State Chem. 1978, 23, 43.
    56. Kamata, K.; Nakajima, T.; Hayashi, T.; Nakamura, T. NonstoichiometricBehavior and Phase Stability of Rare Earth Manganitesat 1200 °C: (1). LaMnO3. Mater. Res. Bull. 1978, 13,
    57. Ming Chen, Bengt Hallstedt, and Ludwig J. Gauckler
    58. Xiaoping Dai, Changchun Yu, Qiong Wu, Journal of Natural Gas Chemistry 17(2008)415–418
    59. S. Mukherjee, M. R. Gonal, M. K. Patel, M. Roy, A. Patra, and A. K. Tyagi, J. Am. Ceram. Soc., 95 [1] 290–295 (2012)
    60. 4S. R. Nair, R. D. Purohit, A. K. Tyagi, P. K. Sinha, and B. K. Sharma,“Bulk Preparation of Sinter-Active Ultra-Fine La(Ca)CrO3 Powder,” J. Am.Ceram. Soc., 91 [1] 88–91 (2008).
    61. Shigenori Onuma, Keiji Yashiro, Shogo Miyoshi, Atsushi Kaimai, Hiroshige Matsumoto,Yutaka Nigara, Tatsuya Kawada, Junichiro Mizusaki, Kenichi Kawamura,Natsuko Sakai, Harumi Yokokawa, Solid State Ionics 174 (2004) 287–293, Section I: Basic and Applied Research
    62.Kouta Iwasaki, Hiroshi Kawashima, Takanori Nagasak, Yuji Arita, Masahito Yoshino, and Tsuneo Matsui, Proceeding of International Symposium on Eco Topia Science 2007,ISETS07(2007)

    無法下載圖示 校內:2022-11-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE