| 研究生: |
李仰高 Lee, Yang-Kao |
|---|---|
| 論文名稱: |
銣85之電磁誘發透明之光拖曳訊雜比增進之研究 Study on the Improvement of Signal-to-Noise Ratio in Light Dragging of Electromagnetically Induced Transparency of Rubidium-85 Atoms |
| 指導教授: |
管培辰
Kuan, Pei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 電磁波誘發透明(EIT) 、光拖曳(Lightdragging) 、訊噪比(SNR) 、散粒雜訊 (Shotnoise) 、艾倫方差(Allanvariance) |
| 外文關鍵詞: | Electromagnetically Induced Transparency (EIT), Light dragging, Signal- to-Noise Ratio (SNR), Allan variance |
| 相關次數: | 點閱:54 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電磁波誘發透明與電磁波誘發吸收皆為量子光學中的干涉現象,光拖曳現象則是光在通過某個移動中的介質後,光速會產生拖曳效應,這項技術可以改變光的傳播速度和方向。
而這篇論文主要在研究如何透過各種實驗方法,來增進銣85熱原子之電磁波誘發透明(簡稱 EIT ),以及光拖曳現象的訊噪比,包含了調整 Etalon(法布里-佩羅干涉儀) 效率、調整光路精準度、以及使用各種濾波器提高實驗的效率以及正確性,最後透過艾倫方差來檢驗實驗中是否存在某種不可控的長期噪音,確保訊號頻率穩定性和量測時間之間的關係。
本篇結論為,我們成功透過上述方法優化了實驗結果,將銣85熱原子之 EIT 誤差棒降低,以及提升了光拖曳實驗量測相位差之效率,也降低其誤差。我們也透過分析長期空訊號,確定了示波器本身存在某一種噪音,此噪音會導致實驗誤差明顯提升。最後,我們透過艾倫方差方法來分析各種數據之誤差來源,也提出了一些未來可用以解決問題之方式和可增進之方向。
This study investigates the enhancement of the Signal-to-Noise Ratio (SNR) in the light-dragging effect within the framework of Electromagnetically Induced Transparency (EIT) in Rubidium-85 (Rb-85) atoms. The focus is on improving the experimental techniques to measure the SNR and phase difference better in light-dragging experiments. The optimization strategies include fine-tuning the etalon's efficiency, refining the precision of the optical path, and employing various filters to enhance the accuracy and reliability of the experimental results. Additionally, Allan variance analysis was used to assess and mitigate long-term noise sources, ensuring stable and precise frequency measurements over extended periods. The findings indicate a significant improvement in the quality of EIT signals, leading to a more accurate determination of phase shifts in light-dragging experiments. The study also identifies inherent noise contributions from the oscilloscope, which previously led to experimental discrepancies. Future recommendations include further refinement of noise reduction techniques and exploration of alternative experimental setups.
[1] Stephen E Harris, JE Field, and A Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Physical Review Letters, 64(10):1107, 1990.
[2] K-J Boller, A Imamoğlu, and Stephen E Harris. Observation of electromagnetically induced transparency. Physical Review Letters, 66(20):2593, 1991.
[3] Jonathan P Marangos. Electromagnetically induced transparency. Journal of modern optics, 45(3):471–503, 1998.
[4] Wesley W Erickson. Electromagnetically Induced Transparency. PhD thesis, Reed College, 2012.
[5] Abraham Olson and Shannon Mayer. Electromagnetically induced transparency in rubidium. American Journal of Physics, 77:116, 02 2009.
[6] PJ Chantry. Doppler broadening in beam experiments. The Journal of Chemical Physics, 55(6):2746–2759, 1971.
[7] RH Dicke. The effect of collisions upon the doppler width of spectral lines. Physical Review, 89(2):472, 1953.
[8] T Karaulanov, MT Graf, D English, SM Rochester, YJ Rosen, K Tsigutkin, D Budker, EB Alexandrov, MV Balabas, DF Jackson Kimball, et al. Controlling atomic vapor density in paraffin-coated cells using light-induced atomic desorption. Physical Review A, 79(1):012902, 2009.
[9] Mason Klein, M Hohensee, DF Phillips, and RL Walsworth. Electromagnetically induced transparency in paraffin-coated vapor cells. Physical Review A, 83(1):013826, 2011.
[10] David L. Andrews. Introduction to quantum optics: From the semi-classical approach to quantized light, by gilbert grynberg, alain aspect and claude fabre. Contemporary Physics, 52(6):627–628, 2011.
[11] Mark Fox. Quantum optics: an introduction. Oxford master series in atomic, optical, and laser physics. Oxford Univ. Press, Oxford, 2006.
[12] Akbar Safari, Israel De Leon, Mohammad Mirhosseini, Omar S Magaña-Loaiza, and Robert W Boyd. Light-drag enhancement by a highly dispersive rubidium vapor. Physical review letters, 116(1):013601, 2016.
[13] Tian Qin, Jianfan Yang, Fangxing Zhang, Yao Chen, Dongyi Shen, Wei Liu, Lei Chen, Xiaoshun Jiang, Xianfeng Chen, and Wenjie Wan. Fast-and slow-light enhanced light drag in a moving microcavity. Communications Physics, 3(1):118, 2020.
[14] David R Pauluzzi and Norman C Beaulieu. A comparison of snr estimation techniques for the awgn channel. IEEE Transactions on communications, 48(10):1681–1691, 2000.
[15] Carlo Beenakker and Christian Schönenberger. Quantum shot noise. Physics Today, 56(5):37–42, 2003.
[16] Horace P Yuen and Vincent WS Chan. Noise in homodyne and heterodyne detection. Optics letters, 8(3):177–179, 1983.
[17] Allan Variance. Noise analysis for gyroscopes. Application Note AN5087 Rev. 0.2/2015. Freescale Semiconductor Inc.(Eindhoven, Niderlands, 2015), 2015.
[18] Yong Gil Ri, Chol Myong Sin, and Jun Gol Kang. Statistical modelling of rate gyros based on fully overlapping allan variance: An improved approach to statistical modelling. IET Science, Measurement & Technology, 16(2):69–77, 2022.
[19] Naser El-Sheimy, Haiying Hou, and Xiaoji Niu. Analysis and modeling of inertial sensors using allan variance. IEEE Transactions on instrumentation and measurement, 57(1):140–149, 2007.
[20] Young-Kwang Jung, Ji-Hwan Lee, Aron Walsh, and Aloysius Soon. Influence of rb/cs cation-exchange on inorganic sn halide perovskites: from chemical structure to physical properties. Chemistry of Materials, 29(7):3181–3188, 2017.
[21] Gang Wang, Yu-Sheng Wang, Emily Kay Huang, Weilun Hung, Kai-Lin Chao, Ping-Yeh Wu, Yi-Hsin Chen, and Ite A Yu. Ultranarrow-bandwidth filter based on a thermal eit medium. Scientific Reports, 8(1):1–7, 2018.
[22] Daniel A Steck. Rubidium 87 d line data. 2001.
[23] L Ma and G Raithel. Doppler narrowing, zeeman and laser beam-shape effects in λ-type electromagnetically induced transparency on the 85rb d2 line in a vapor cell. Journal of Physics Communications, 4(9):095020, 2020.
[24] Ran Finkelstein, Samir Bali, Ofer Firstenberg, and Irina Novikova. A practical guide to electromagnetically induced transparency in atomic vapor. arXiv preprint arXiv:2205.10959, 2022.
[25] V. Piacente, G. Bardi, and L. Malaspina. Vapor pressure of rubidium and disso- ciation energy of rb2. The Journal of Chemical Thermodynamics, 5(2):219–226, 1973.
[26] Rafayel Mirzoyan. Study of the coherent effects in rubidium atomic vapor under bi-chromatic laser radiation. Theses, Université de Bourgogne, June 2013.
[27] E Mariotti, S Atutov, M Meucci, P Bicchi, C Marinelli, and L Moi. Dynamics of rubidium light-induced atom desorption (liad). Chemical physics, 187(1-2):111– 115, 1994.
[28] Michael Fleischhauer, Atac Imamoglu, and Jonathan P Marangos. Electromag- netically induced transparency: Optics in coherent media. Reviews of modern physics, 77(2):633, 2005.
[29] Sumanta Khan, Vineet Bharti, and Vasant Natarajan. Role of dressed-state interference in electromagnetically induced transparency. Physics Letters A, 380(48):4100–4104, 2016.
[30] Mahdi Hosseini, Ben M Sparkes, Geoff Campbell, Ping K Lam, and Ben C Buchler. High efficiency coherent optical memory with warm rubidium vapour. Nature communications, 2(1):1–5, 2011.
[31] Or Katz and Ofer Firstenberg. Light storage for one second in room-temperature alkali vapor. Nature communications, 9(1):1–6, 2018.