| 研究生: |
尤勝弘 Yu, Sheng-Hong |
|---|---|
| 論文名稱: |
內嵌具表面增顯拉曼散射金奈米孔洞之微流道以檢測微量特定DNA序列 SERS-based Au Nano-cavities embedded micro-fluidic channel for trace detection of specific DNA sequences |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 表面增顯拉曼散射 、空間強化金奈米陣列 、奈米孔洞 、核酸雜合反應 、拉曼位移 、免標定 |
| 外文關鍵詞: | surface-enhanced Raman scattering, spatially reinforced Au nano-array, nano-cavity, DNA hybridization, raman shift, labe-free |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳染性疾病可由其病原體特定DNA或蛋白質來辨識。拉曼光譜以雷射光與檢測分子交互作用後直接分析分子結構與官能基進而提供指紋性圖譜。拉曼光譜更可結合SERS效應提高其檢測靈敏度,非常適合應用於生醫檢測上。本研究使用「空間強化型SERS活性基板」結合微流道建立以拉曼光譜方式辨識病原體特定核酸序列之檢測平台。
利用奈米壓痕試驗機可在單一步驟下製作出精密度高之特異性孔洞結構陣列,並透過控制壓痕間距來縮減奈米孔洞開口大小進而提高深寬比,以此強化表面電漿子侷限化之作用進而產生較大之表面增顯拉曼散射效果。本研究選用禽流感病毒H7特殊核酸片段進行不同雜合狀態拉曼光譜檢測。在低濃度下,利用互補序列作為捕捉與篩檢探針於懸浮狀態及固定狀態下進行檢測,並藉由分析指紋性圖譜來辨識是否與目標待測物產生雜合。進一步將空間強化型奈米孔洞結構整合於微流道中藉由比對拉曼光譜對不同核酸序列進行免標定檢測及辨識。
研究成果顯示:以空間強化型SERS活性基板針對禽流感H7-Target核酸片段及互補序列H7-Probe進行免標定之拉曼光譜檢測,能夠完整地呈現之指紋特性拉曼圖譜且檢測濃度極限可達10-10 M,且由拉曼圖譜比對以738 cm-1峰值的消失及相對最高峰由1603 cm-1位移至1554 cm-1來辨識H7核酸片段是否產生雜合。藉由將H7-Probe改質於基板上並作為捕捉端並整合於微流道中可成功辨識互補核酸序列及非互補核酸序列。以上成果證實可應用於早期病毒病原體檢測及辨識用途。
Infectious disease is recognized by the pathogens biomarker identification of specific DNA or proteins. Raman spectroscopy is a technique used to analysis molecule structure and provide the specific spectra by the interaction between the molecule and laser light. The detection sensitivity of Raman spectra can be induced by SERS, so it is good for Biomolecules analysis. In this study, we developed a detection method for recognizing biomarker, such as specific DNA sequence by SERS spectra with combining spatially reinforced Au nano-cavities (SR-nAu) substrate and micro-fluidic channel.
In this study, we used Nano-indentater, by controlling the tip-to-tip displacements to reduce the volume, to fabricate SR-nAu substrate for detecting specific DNA sequences of Avian influenza with virus hybridization responses; In the nano-cavity, suspended, or immobilized probe and its complementary target and mismatch sequences at very low concentration were characterized through enhanced Raman spectra. Furthermore, we confirmed SR-nAu in micro-fluidic channel to detect and recognize the different DNA sequences without labeling by Raman spectra.
These results demonstrated SR-nAu substrate was competent to recognize the various hybridization responses of H7 sequence by the presence of Raman shift at 738 cm-1 and the change of relative peaks intensity at 1603 and 1554 cm-1 before/after hybridization. By immobilizing H7-Probe on SR-nAu substrate as a capture site could sieve its complementary target and mismatch sequences. Based on these result, the development of detect platform could be applied to early bio-medical detection.
[1] M. V. Lilienfeld-Toal, L. E. Lehmann, A. D. Raadts, C. Hahn-Ast, K. S. Orlopp, G. Marklein, I. Purr, G. Cook, A. Hoeft, A. Glasmacher, and F. Stuber, "Utility of a commercially available multiplex real-time PCR assay to detect bacterial and fungal pathogens in febrile neutropenia," J Clin Microbiol, Vol. 47, 2405-2410, 2009.
[2] H. W. Chen, C. H. Wang, and I. C. Cheng, "A type-specific blocking ELISA for the detection of infectious bronchitis virus antibody," J Virol Methods, Vol. 173, 7-12, 2011.
[3] V. Espina, E. C. Woodhouse, J. Wulfkuhle, H. D. Asmussen, E. F. Petricoin, 3rd, and L. A. Liotta, "Protein microarray detection strategies: focus on direct detection technologies," J Immunol Methods, Vol. 290, 121-133, 2004.
[4] F. Wallet, S. Nseir, L. Baumann, S. Herwegh, B. Sendid, M. Boulo, M. Roussel-Delvallez, A. V. Durocher, and R. J. Courcol, "Preliminary clinical study using a multiplex real-time PCR test for the detection of bacterial and fungal DNA directly in blood," Clinical Microbiology and Infection, Vol. 16, 774-779, 2010.
[5] A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney, and M. J. Natan, "Raman spectroscopy," Analytical Chemistry, Vol. 70, 341-362, 1998.
[6] C. Krafft, G. Steiner, C. Beleites, and R. Salzer, "Disease recognition by infrared and Raman spectroscopy," J Biophotonics, Vol. 2, 13-28, 2009.
[7] R. Petry, M. Schmitt, and J. Popp, "Raman Spectroscopy—A Prospective Tool in the Life Sciences," ChemPhysChem, Vol. 4, 14-30, 2003.
[8] D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, "Electrochemical surface-enhanced Raman spectroscopy of nanostructures," Chem Soc Rev, Vol. 37, 1025-1041, 2008.
[9] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Physical Review Letters, Vol. 78, 1667-1670, 1997.
[10] J. Kneipp, B. Wittig, H. Bohr, and K. Kneipp, "Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine," Theoretical Chemistry Accounts, Vol. 125, 319-327, 2009.
[11] 張雅芳 和 黃正仲, "微陣列生物科技," 科學發展, vol. 381, 34-41, 2004.
[12] 林群哲 和 林謙德, "生物晶片-淺談微陣列晶片與電泳晶片," 科儀新知, Vol. 29, 67-79, 2007.
[13] R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, "Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection," Analytical Chemistry, Vol. 76, 1824-1831, 2004.
[14] O. P. Kallioniemi, "Biochip technologies in cancer research," Annals of Medicine, Vol. 33, 142-147, 2001.
[15] C. P. Paweletz, J. W. Gillespie, D. K. Ornstein, N. L. Simone, M. R. Brown, K. A. Cole, Q. H. Wang, J. Huang, N. Hu, T. T.Yip, W. E. Rich, E. C. Kohn, W. M. Linehan, T. Weber, P. Taylor, M. R. Emmert-Buck, L. A. Liotta, and E. F. Petricoin, "Rapid Protein Display Profiling of Cancer Progression Directly From Human Tissue Using a Protein Biochip," Drug Development Research, Vol. 49, 34-42, 2000.
[16] S. R. Weinberger, T. S. Morris, and M. Pawlak, "Recent trends in protein biochip technology," Pharmacogenomics, Vol. 1, 395-416, 2000.
[17] K. K. Strelau, R. Kretschmer, R. Moller, W. Fritzsche, and J. Popp, "SERS as tool for the analysis of DNA-chips in a microfluidic platform," Anal Bioanal Chem, Vol. 396, 1381-1384, 2010.
[18] A. Marz, T. Henkel, D. Cialla, M. Schmitt, and J. Popp, "Droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy--concepts and applications," Lab Chip, Vol. 11, 3584-3592, 2011.
[19] T. Park, S. Lee, G. H. Seong, J. Choo, E. K. Lee, Y. S. Kim, W. H. Ji, S. Y. Hwang, and D. G. Gweon, "Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study," Lab Chip, Vol. 5, 437-442, 2005.
[20] M. Moskovits, "Surface-enhanced Raman spectroscopy: a brief retrospective," Journal of Raman Spectroscopy, Vol. 36, 485-496, 2005.
[21] N. Ji, W. Ruan, C. Wang, Z. Lu, and B. Zhao, "Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference," Langmuir, Vol. 25, 11869-11873, 2009.
[22] L. Zhang, P. Zhang, and Y. Fang, "Magnetron sputtering of silver nanowires using anodic aluminum oxide template: a new active substrate of surface enhanced Raman scattering and an investigation of its enhanced mechanism," Anal Chim Acta, Vol. 591, 214-218, 2007.
[23] C. Ruan, G. Eres, W. Wang, Z. Zhang, and B. Gu, "Controlled Fabrication of Nanopillar Arrays as Active Substrates for Surface-Enhanced Raman Spectroscopy," Langmuir, Vol. 23, 5757-5760, 2007.
[24] N. Marquestaut, A. Martin, D. Talaga, L. Servant, S. Ravaine, S. P. Reculusa, D. M. Bassani, E. Gillies, and F. o. Lagugné-Labarthet, "Raman Enhancement of Azobenzene Monolayers on Substrates Prepared by Langmuir−Blodgett Deposition and Electron-Beam Lithography Techniques," Langmuir, Vol. 24, 11313-11321, 2008.
[25] U. Huebner, R. Boucher, H. Schneidewind, D. Cialla, and J. Popp, "Microfabricated SERS-arrays with sharp-edged metallic nanostructures," Microelectronic Engineering, Vol. 85, 1792-1794, 2008.
[26] B. Cui, Y. Cortot, and T. Veres, "Polyimide nanostructures fabricated by nanoimprint lithography and its applications," Microelectronic Engineering, Vol. 83, 906-909, 2006.
[27] X. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, "Advances in Contemporary Nanosphere Lithographic Techniques," Journal of Nanoscience and Nanotechnology, Vol. 6, 1920-1934, 2006.
[28] A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-Enhanced Raman Scattering," Nano Letters, Vol. 4, 2015-2018, 2004.
[29] A. Dhawan, M. Gerhold, and T. Vo-Dinh, "Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS)," NanoBiotechnology, Vol. 3, 164-171, 2007.
[30] Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, "Localized Raman Enhancement from a Double-Hole Nanostructure in a Metal Film," The Journal of Physical Chemistry C, Vol. 112, 15098-15101, 2008.
[31] J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, "The Use of Aligned Silver Nanorod Arrays Prepared by Oblique Angle Deposition as Surface Enhanced Raman Scattering Substrates," The Journal of Physical Chemistry C, Vol. 112, 895-901, 2008.
[32] S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, "Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver Nanorod Array SERS Substrate," Nano Letters, Vol. 6, 2630-2636, 2006.
[33] C. W. Chang, J. D. Liao, H. C. Chang, L. K. Lin, Y. Y. Lin, and C. C. Weng, "Fabrication of nano-indented cavities on Au for the detection of chemically-adsorbed DTNB molecular probes through SERS effect," J Colloid Interface Sci, Vol. 358, 384-391, 2011.
[34] C. W. Chang, J. D. Liao, A. L. Shiau, and C. K. Yao, "Non-labeled virus detection using inverted triangular Au nano-cavities arrayed as SERS-active substrate," Sensors and Actuators B: Chemical, Vol. 156, 471-478, 2011.
[35] C. W. Chang, J. D. Liao, Y. Y. Lin, and C. C. Weng, "Detecting very small quantity of molecular probes in solution using nano-mechanically made Au-cavities array with SERS-active effect," Sensors and Actuators B: Chemical, Vol. 153, 271-276, 2011.
[36] C. K. Yao, J. D. Liao, C. W. Chang, and J. R. Lin, "Spatially reinforced nano-cavity array as the SERS-active substrate for detecting hepatitis virus core antigen at low concentrations," Sensors and Actuators B: Chemical, Vol. 174, 478-484, 2012.
[37] T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, "Localized and delocalized plasmons in metallic nanovoids," Physical Review B, Vol. 74,245415, 2006.
[38] N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, "Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering," Optics Express, Vol. 14, 847-857, 2006.
[39] Y. Y. Lin, J. D. Liao, M. L. Yang, and C. L. Wu, "Target-size embracing dimension for sensitive detection of viruses with various sizes and influenza virus strains," Biosens Bioelectron, Vol. 35, 447-51, 2012.
[40] K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. Gómez, and D. Lau, "Physical mechanisms behind the SERS enhancement of pyramidal pit substrates," Journal of Raman Spectroscopy, Vol. 41, 1106-1111, 2010.
[41] G. Keresztury, "Raman Spectroscopy: Theory, handbook of vibrational spectroscopy", John Wiley & Sons, Vol. 1, 71, 2001.
[42] 汪建民, "材料分析," 國材料科學學會, 73-82, 1998.
[43] C. Krafft, G. Steiner, C. Beleites, and R. Salzer, "Disease recognition by infrared and Raman spectroscopy," Journal of Biophotonics, Vol. 2, 13-28, 2009.
[44] 李冠卿, "表面強化拉漫散射," 物理雙月刊, Vol. 5, 185, 1983.
[45] 謝雲生, "雷射拉曼光譜簡介," 物理雙月刊, Vol. 7, 25, 1985.
[46] Skoog and H. Nieman, "Raman spectroscopy, principles of instrumental analysis 5/e," Harcourt Brace & Company, 429-430, 1998.
[47] J. R. F. a. K. Nakamoto, "Introduction Raman spectroscopy," Academic Press, 1-25, 1994.
[48] L. Richard and McCreery, "Raman spectroscopy for chemical analysis," New York: Wiley Interscience, Vol. 157, 2000.
[49] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, Vol. 26, 163-166, 1974.
[50] D. L. Jeanmaire and R. P. Van Duyne, "Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 84, 1-20, 1977.
[51] 吳民耀和劉威志, "表面強化拉曼散射," 物理雙月刊, Vol. 2, 486-495, 2006.
[52] A. Otto, "In light scattering in solids IV. electronic scattering, spin effects, SERS and morphic effects," Sptinger-Verlag, Vol. 289, 1984.
[53] S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter and N. J. Halas, "Tailoring Plasmonic Substrates for Surface Enhanced Spectroscopies", Chemical Society Reviews, Vol. 37, 898-911, 2008.
[54] R. Dong, X. Yan, X. Pang and S. Liu, "Temperature-dependent Raman spectra of collagen and DNA ", Spectrochimica Acta Part A, Vol. 60, 557-561, 2004.
[55] M. C. Fletcher, A. Vivoni, M. M. Moore, J. Lui, J. Caldwell, S. M. Prokes, O. Glembocki and C. M. Hosten, "NIR-FT-SERS of 4"- trimethylsilylethylsulfanyl-4,4'-di-(phenyleneethynylene)benzenethiol on Au nanospheres", Surface Science, Vol. 602, 1614-1621, 2008.
[56] D. K. Jangir, S. K. Dey, S. Kundu and R. Mehrotra, "Assessment of amsacrine binding with DNA using UV–visible, circular dichroism and Raman spectroscopic techniques", Journal of Photochemistry and Photobiology B: Biology, Vol. 114, 38-43, 2012.
校內:2018-08-19公開