簡易檢索 / 詳目顯示

研究生: 李心佑
Lee, Hsin-Yu
論文名稱: 電腦視覺技術於多人STEAM教育的實作學習活動之分析與探討
Computer Vision Technology for Tracking and Analyzing Individual Hands-on Learning Behavior in STEAM Activity
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 68
中文關鍵詞: STEAM教育動手作學習人工智慧物件偵測人體姿態估算
外文關鍵詞: STEAM Education, Hands-on Learning, Artificial Intelligence, Object Detection, Human Pose Estimation
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來STEAM教育的議題眾所矚目,越來越多的研究致力於STEAM教育以提升學習者未來的競爭力;然而,由於STEAM教育內容的多樣性,導致傳統以教師為中心的教學方法在STEM/STEAM教育上效果不佳;歸因於STEAM教育的實作學習活動內容,這使得動手作學習理論被廣泛地應用於STEAM教育中,並試圖在STEAM教育中找到最合適的教學方法。是故,如何在STEAM教育中有效評估動手作的動作並用以分析學習者的表現便成了教育研究中一項重要的課題。過往的研究指出,學習者在課堂中的表現與其後續發展有一定的關聯;而在STEAM教育中通常以自我報告或觀察法的方式量測表現,自我報告往往受限於學習者的自我意識導自結果有所偏差,並且往往無法有效地了解不同時間段學習者動作的變化;而觀察法則需耗費大量的時間與人力成本進行標記與編碼。因此,隨著人工智慧技術的興起,本研究結合人體姿態估算技術與物件偵測技術,提出一套自動化量測學習者在STEAM實作活動的系統架構,用以有效地識別動手作行為所衍伸的事件與動作,並合理地判斷學習者在STEAM動手作課程的學習表現。
    本研究以Micro:bit避障自走車作為STEAM動手作活動並以此驗證所提出系統之準確性;研究結果表明,使用YOLOv4-Large針對STEAM動手作活動中常見的七項物件與工具進行辨識mAp可達96.1%;而使用改良版OpenPose亦可以準確地抓出學習者進行STEAM動手作活動時手部的關鍵點,經評估後可達90%以上的辨識準確度。最終,得力於上述二者良好的辨識結果,在STEAM動手作活動中得平均87%的動作辨識準確度。另一方面,本研究利用STEAM動手作活動之後測分數做為衡量學習成就之因子,並探討動作對於學習成就的影響,發現在STEAM動手作活動中操作相關的物件與程式編寫的次數越多者,其學習成就越高;相反地從事越多與STEAM動手作活動無關的動作者,其學習成就便越低,這相對地也說明學習者更積極地從事STEAM動手作學習活動會獲得更好的學習表現。因此,本研究所提出之系統架構除了在準確度上有所提升更可辨識出小組中個別成員的動作,為STEAM動手作活動的自動化量測提供全新的視野與藍圖,同時也為自動化量測的可行性作出相應的參考依據。

    The STEAM is an educational concept of interdisciplinary curriculum integration, which involves that the knowledge and skills of science, technology, engineering, arts, and math courses. Countries all over the world are actively promoting STEAM education plans, as well as related education policies and teaching strategies. Influenced by the idea of learning by doing, STEAM education centered on hands-on learning has gradually been disseminated and promoted. However, previous research was generally used scales or questionnaires for quantitative analysis to evaluate the learning performances. That may be prone to be biased by people’s self-awareness. To measure performance of students who do the hands-on learning in STEAM activity automatically, this study propose a system that use YOLOv4 and OpenPose to recognize the learning materials/tools and find the participants’ hand keypoints, and then combining both of results to recognize students' action. Finally, based on the system output, it can help teachers to realize what participants need on time and what's the relationship between participants' action and learning achievement.

    摘要 I Abstract III 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 壹、 前言 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的與問題 3 貳、 文獻探討 5 2.1 STEM/STEAM教育 5 2.1.1 STEM到STEAM的教育沿革 5 2.1.2 STEAM動手做學習 7 2.2 人工智慧 8 2.2.1 人工智慧教育應用 10 2.3 行為辨識 13 2.3.1 學習行為辨識 14 2.4 物件偵測 15 2.5 人體姿態估計 18 參、 系統架構 21 3.1 YOLOv4 22 3.2 OpenPose 24 3.3 動作識別系統 26 3.4 人體追蹤演算法 30 肆、 研究方法 33 4.1 實驗設計 33 4.1.1 實驗對象 33 4.1.2 實驗設計與流程 33 4.2 資料蒐集 36 4.3 數據分析 38 4.3.1 研究工具 38 4.3.2 資料處理與分析 38 伍、 研究結果 40 5.1 STEAM實作活動物件辨識結果 40 5.1.1 YOLOv4辨識結果 40 5.1.2 YOLOv4-Large辨識結果 42 5.2 STEAM實作活動動手做辨識結果 43 5.2.1 手部關鍵點辨識結果 43 5.2.2 動作識別系統準確度分析 45 陸、 討論 50 6.1 動手做與學習成就之相關性 50 6.2 動手做與學習成就之分析 52 柒、 結論與未來展望 55 7.1 研究結論 55 7.2 研究限制 56 7.3 未來展望 56 參考文獻 58

    舒一修(民109)。手部姿勢搭配物件偵測於學生參與度之識別:以避障自走車為例(碩士論文)。國立成功大學,臺南市。
    Acikkar, M., & Akay, M. F. (2009). Support vector machines for predicting the admission decision of a candidate to the School of Physical Education and Sports at Cukurova University. Expert Systems with Applications, 36(3), 7228-7233.
    Adamson, D., Dyke, G., Jang, H., & Rosé, C. P. (2014). Towards an agile approach to adapting dynamic collaboration support to student needs. International Journal of Artificial Intelligence in Education, 24(1), 92-124.
    Aggarwal, J. K., & Ryoo, M. S. (2011). Human activity analysis: A review. ACM Computing Surveys (CSUR), 43(3), 1-43.
    Aluthman, E. S. (2016). The effect of using automated essay evaluation on ESL undergraduate students’ writing skill. International Journal of English Linguistics, 6(5), 54-67.
    Amberkar, A., Awasarmol, P., Deshmukh, G., & Dave, P. (2018). Speech Recognition using Recurrent Neural Networks. Paper presented at the 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT).
    Amigud, A., Arnedo-Moreno, J., Daradoumis, T., & Guerrero-Roldan, A.-E. (2017). Using learning analytics for preserving academic integrity. International Review of Research in Open and Distributed Learning: IRRODL, 18(5), 192-210.
    Ayodele, T. O. (2010). Types of machine learning algorithms. New advances in machine learning, 3, 19-48.
    Babić, I. Đ. (2017). Machine learning methods in predicting the student academic motivation. Croatian Operational Research Review, 443-461.
    Ballantyne, R., & Packer, J. (2009). Introducing a fifth pedagogy: Experience‐based strategies for facilitating learning in natural environments. Environmental education research, 15(2), 243-262.
    Barbadekar, A., Gaikwad, V., Patil, S., Chaudhari, T., Deshpande, S., Burad, S., & Godbole, R. (2019). Engagement Index for Classroom Lecture using Computer Vision. Paper presented at the 2019 Global Conference for Advancement in Technology (GCAT).
    Ben Mabrouk, A., & Zagrouba, E. (2018). Abnormal behavior recognition for intelligent video surveillance systems: A review. Expert Systems with Applications, 91, 480-491. doi:https://doi.org/10.1016/j.eswa.2017.09.029
    Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking. Paper presented at the 2016 IEEE international conference on image processing (ICIP).
    Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934.
    Brigham, F. J., Scruggs, T. E., & Mastropieri, M. A. (2011). Science education and students with learning disabilities. Learning Disabilities Research & Practice, 26(4), 223-232.
    Brown, R., Brown, J., Reardon, K., & Merrill, C. (2011). Understanding STEM: current perceptions. Technology and engineering teacher, 70(6), 5.
    Bux, A., Angelov, P., & Habib, Z. (2017, 2017//). Vision Based Human Activity Recognition: A Review. Paper presented at the Advances in Computational Intelligence Systems, Cham.
    Bybee, R. W. (2010a). Advancing STEM education: A 2020 vision. Technology and engineering teacher, 70(1), 30.
    Bybee, R. W. (2010b). What is STEM education? In: American Association for the Advancement of Science.
    Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities: NSTA press.
    Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: a narrative overview. Procedia Computer Science, 136, 16-24.
    Chen, J.-F., & Do, Q. H. (2014). Training neural networks to predict student academic performance: A comparison of cuckoo search and gravitational search algorithms. International Journal of Computational Intelligence and Applications, 13(01), 1450005.
    Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: a review. IEEE Access, 8, 75264-75278.
    Chen, W., Shah, U. V., & Brechtelsbauer, C. (2019). A framework for hands-on learning in chemical engineering education—Training students with the end goal in mind. Education for Chemical Engineers, 28, 25-29. doi:https://doi.org/10.1016/j.ece.2019.03.002
    Chen, X., Xie, H., Zou, D., & Hwang, G.-J. (2020). Application and theory gaps during the rise of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100002. doi:https://doi.org/10.1016/j.caeai.2020.100002
    Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., & Sun, J. (2018). Cascaded pyramid network for multi-person pose estimation. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Chien, Y.-H. (2017). Developing a pre-engineering curriculum for 3D printing skills for high school technology education. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 2941-2958.
    Chou, C.-Y., Huang, B.-H., & Lin, C.-J. (2011). Complementary machine intelligence and human intelligence in virtual teaching assistant for tutoring program tracing. Computers & Education, 57(4), 2303-2312.
    Chowdhury, T. Z. (2018). Using Wi-Fi channel state information (CSI) for human activity recognition and fall detection. University of British Columbia,
    Christensen, R., Knezek, G., & Tyler-Wood, T. (2015). Alignment of Hands-on STEM Engagement Activities with Positive STEM Dispositions in Secondary School Students. Journal of Science Education and Technology, 24(6), 898-909. doi:10.1007/s10956-015-9572-6
    Clapp, E. P., & Jimenez, R. L. (2016). Implementing STEAM in maker-centered learning. Psychology of Aesthetics, Creativity, and the Arts, 10(4), 481.
    Cobos, C., Rodriguez, O., Rivera, J., Betancourt, J., Mendoza, M., León, E., & Herrera-Viedma, E. (2013). A hybrid system of pedagogical pattern recommendations based on singular value decomposition and variable data attributes. Information Processing & Management, 49(3), 607-625.
    Congress, U. (2001). No child left behind act of 2001. Public law, 107, 110.
    Connor, K. A., Ferri, B. H., & Meehan, K. (2013). Models of mobile hands-on STEM education.
    Crown, S., Fuentes, A., Jones, R., Nambiar, R., & Crown, D. (2011). Anne G. Neering: Interactive chatbot to engage and motivate engineering students. Computers in Education Journal, 21(2), 24-34.
    D'Mello, S., Dieterle, E., & Duckworth, A. (2017). Advanced, analytic, automated (AAA) measurement of engagement during learning. Educational Psychologist, 52(2), 104-123.
    Dai, C., Liu, X., & Lai, J. (2020). Human action recognition using two-stream attention based LSTM networks. Applied soft computing, 86, 105820.
    Dechter, R. (1986). Learning while searching in constraint-satisfaction problems.
    Dewey, J. (1986). Experience and education. Paper presented at the The educational forum.
    Duffy, M. C., & Azevedo, R. (2015). Motivation matters: Interactions between achievement goals and agent scaffolding for self-regulated learning within an intelligent tutoring system. Computers in Human Behavior, 52, 338-348.
    Díaz, J. C. T., Moro, A. I., & Díaz, P. V. (2014). Los MOOC y la masificación personalizada. Profesorado. Revista de Currículum y Formación de Profesorado, 18(1), 63-72.
    English, L. D. (2016). STEM education K-12: perspectives on integration. International Journal of STEM Education, 3(1), 3. doi:10.1186/s40594-016-0036-1
    Fan, S.-C., & Yu, K.-C. (2017). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology and Design Education, 27(1), 107-129.
    Farley-Ripple, E., Karpyn, A. E., McDonough, K., & Tilley, K. (2017). Defining how we get from research to practice: A model framework for schools. In Evidence and public good in educational policy, research and practice (pp. 79-95): Springer.
    Fjelland, R. (2020). Why general artificial intelligence will not be realized. Humanities and Social Sciences Communications, 7(1), 1-9.
    Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415.
    García‐Gorrostieta, J. M., López‐López, A., & González‐López, S. (2018). Automatic argument assessment of final project reports of computer engineering students. Computer Applications in Engineering Education, 26(5), 1217-1226.
    Gardner, D. P. (1983). A nation at risk: The imperative for educational reform: A report to the nation and the Secretary of Education, United States Department of Education: The Commission.
    Gutiérrez, G., Canul-Reich, J., Zezzatti, A. O., Margain, L., & Ponce, J. (2018). Mining: Students comments about teacher performance assessment using machine learning algorithms. International Journal of Combinatorial Optimization Problems and Informatics, 9(3), 26.
    Halevy, A., Norvig, P., & Pereira, F. (2009). The unreasonable effectiveness of data. IEEE Intelligent Systems, 24(2), 8-12.
    Haugsbakk, G. (2013). From Sputnik to PISA shock–New technology and educational reform in Norway and Sweden. Education Inquiry, 4(4), 23222.
    He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. Paper presented at the Proceedings of the IEEE international conference on computer vision.
    Hidalgo, G., Raaj, Y., Idrees, H., Xiang, D., Joo, H., Simon, T., & Sheikh, Y. (2019). Single-network whole-body pose estimation. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision.
    Holstermann, N., Grube, D., & Bögeholz, S. (2010). Hands-on Activities and Their Influence on Students’ Interest. Research in Science Education, 40(5), 743-757. doi:10.1007/s11165-009-9142-0
    Howard, E., Meehan, M., & Parnell, A. (2018). Contrasting prediction methods for early warning systems at undergraduate level. The Internet and Higher Education, 37, 66-75.
    Huang, S.-P. (2018). Effects of using artificial intelligence teaching system for environmental education on environmental knowledge and attitude. Eurasia Journal of Mathematics, Science and Technology Education, 14(7), 3277-3284.
    Hussain, M., Zhu, W., Zhang, W., & Abidi, S. M. R. (2018). Student engagement predictions in an e-learning system and their impact on student course assessment scores. Computational intelligence and neuroscience, 2018.
    Iqbal, U., & Gall, J. (2016). Multi-person pose estimation with local joint-to-person associations. Paper presented at the European Conference on Computer Vision.
    Jaouedi, N., Boujnah, N., & Bouhlel, M. S. (2020). A new hybrid deep learning model for human action recognition. Journal of King Saud University-Computer and Information Sciences, 32(4), 447-453.
    Jordan, M. I. (2019). Artificial intelligence—the revolution hasn’t happened yet. Harvard Data Science Review, 1(1).
    Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.
    Kang, M., Jang, K., & Kim, S. (2013). Development of 3D actuator-based learning simulators for robotics STEAM education. International Journal of Robots, Education and Art, 3(1), 22-32.
    Kao, G. Y.-M., Chen, K.-C., & Sun, C.-T. (2010). Using an e-learning system with integrated concept maps to improve conceptual understanding. International Journal of Instructional Media, 37(2), 151-162.
    Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25.
    Karita, S., Chen, N., Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., . . . Wang, X. (2019). A comparative study on transformer vs RNN in speech applications. Paper presented at the 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU).
    Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 11. doi:10.1186/s40594-016-0046-z
    Kim, H., O'Sullivan, D., Kolykhalova, K., Camurri, A., & Park, Y. (2021). Evaluation of a Computer Vision-Based System to Analyse Behavioral Changes in High School Classrooms. International Journal of Information and Communication Technology Education (IJICTE), 17(4), 1-12.
    Kose, U., & Arslan, A. (2016). Intelligent e-learning system for improving students’ academic achievements in computer programming courses. The International journal of engineering education, 32(1), 185-198.
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
    Lee, Y.-J. (2012). Developing an efficient computational method that estimates the ability of students in a Web-based learning environment. Computers & Education, 58(1), 579-589.
    Li, Y. (2018). Journal for STEM Education Research – Promoting the Development of Interdisciplinary Research in STEM Education. Journal for STEM Education Research, 1(1), 1-6. doi:10.1007/s41979-018-0009-z
    Liang, J.-M., Su, W.-C., Chen, Y.-L., Wu, S.-L., & Chen, J.-J. (2019). Smart interactive education system based on wearable devices. Sensors, 19(15), 3260.
    Lin, T. (2020). labelImg [v1.8.4]. Retrieved from https://github.com/tzutalin/labelImg
    Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2020). Deep learning for generic object detection: A survey. International journal of computer vision, 128(2), 261-318.
    Liu, T., Chen, Z., & Wang, X. (2019). Automatic instructional pointing gesture recognition by machine learning in the intelligent learning environment. Paper presented at the Proceedings of the 2019 4th International Conference on Distance Education and Learning.
    Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. Paper presented at the European conference on computer vision.
    Martin, P.-E., Benois-Pineau, J., Péteri, R., & Morlier, J. (2020). Fine grained sport action recognition with twin spatio-temporal convolutional neural networks. Multimedia Tools and Applications, 79(27), 20429-20447.
    Martín‐Páez, T., Aguilera, D., Perales‐Palacios, F. J., & Vílchez‐González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822.
    McCarthy, J. (1956). The inversion of functions defined by Turing machines. Automata studies, 177-181.
    Montani, S., & Striani, M. (2019). Artificial intelligence in clinical decision support: a focused literature survey. Yearbook of medical informatics, 28(1), 120.
    Moore, G. E. (1975). Progress in digital integrated electronics. Paper presented at the Electron devices meeting.
    Munea, T. L., Jembre, Y. Z., Weldegebriel, H. T., Chen, L., Huang, C., & Yang, C. (2020). The Progress of Human Pose Estimation: A Survey and Taxonomy of Models Applied in 2D Human Pose Estimation. IEEE Access, 8, 133330-133348.
    Naidu, V. R., Singh, B., Al Farei, K., & Al Suqri, N. (2020). Machine learning for flipped teaching in higher education—a reflection. In Sustainable Development and Social Responsibility—Volume 2 (pp. 129-132): Springer.
    National Commission on Excellence in Education. (1983). A Nation at Risk: The Imperative for Educational Reform. Washington, DC: The National Commission on Excellence in Education.
    Oner, A. T., Nite, S. B., Capraro, R. M., & Capraro, M. M. (2016). From STEM to STEAM: Students’ beliefs about the use of their creativity. The STEAM Journal, 2(2), 6.
    Oztekin, A. (2016). A hybrid data analytic approach to predict college graduation status and its determinative factors. Industrial Management & Data Systems.
    Pantic, M., Pentland, A., Nijholt, A., & Huang, T. S. (2007). Human computing and machine understanding of human behavior: A survey. In Artifical intelligence for human computing (pp. 47-71): Springer.
    Paquette, L., Lebeau, J.-F., Beaulieu, G., & Mayers, A. (2015). Designing a knowledge representation approach for the generation of pedagogical interventions by MTTs. International Journal of Artificial Intelligence in Education, 25(1), 118-156.
    Patton, R. M., & Knochel, A. D. (2017). Meaningful makers: Stuff, sharing, and connection in STEAM curriculum. Art Education, 70(1), 36-43.
    Paulhus, D. L., & Vazire, S. (2007). The self-report method. Handbook of research methods in personality psychology, 1, 224-239.
    Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31, 31-43. doi:https://doi.org/10.1016/j.tsc.2018.10.002
    Perin, D., & Lauterbach, M. (2018). Assessing text-based writing of low-skilled college students. International Journal of Artificial Intelligence in Education, 28(1), 56-78.
    Piaget, J., Grize, J.-B., Szeminska, A., & Bang, V. (1977). Epistemology and psychology of functions (Vol. 23): Springer Science & Business Media.
    Pion, G. M., & Lipsey, M. W. (1984). Psychology and society: The challenge of change. American Psychologist, 39(7), 739.
    Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P. V., & Schiele, B. (2016). Deepcut: Joint subset partition and labeling for multi person pose estimation. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Plans, A. (2015). The every student succeeds act: Explained. Education week.
    Prokop, P., & Fančovičová, J. (2017). The effect of hands-on activities on children’s knowledge and disgust for animals. Journal of Biological Education, 51(3), 305-314.
    Quixal, M., & Meurers, D. (2016). How Can Writing Tasks Be Characterized in a Way Serving Pedagogical Goals and Automatic Analysis Needs? calico journal, 33(1), 19-48.
    Ramírez, J., Rico, M., Riofrío-Luzcando, D., Berrocal-Lobo, M., & de Antonio, A. (2018). Students’ evaluation of a virtual world for procedural training in a tertiary-education course. Journal of Educational Computing Research, 56(1), 23-47.
    Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
    Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
    Reeves, T. D., & Chiang, J.-L. (2019). Effects of an asynchronous online data literacy intervention on pre-service and in-service educators’ beliefs, self-efficacy, and practices. Computers & Education, 136, 13-33.
    Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6), 1137-1149.
    Renninger, K. A., & Bachrach, J. E. (2015). Studying Triggers for Interest and Engagement Using Observational Methods. Educational Psychologist, 50(1), 58-69. doi:10.1080/00461520.2014.999920
    Ritz, J. M., & Fan, S.-C. (2015). STEM and technology education: international state-of-the-art. International Journal of Technology and Design Education, 25(4), 429-451. doi:10.1007/s10798-014-9290-z
    Robelen, E. W. (2011). STEAM: Experts make case for adding arts to STEM. Education week, 31(13), 8.
    Romberg, T. A. (1989). Curriculum and evaluation standards for school mathematics: National Council of Teachers of.
    Rovira, S., Puertas, E., & Igual, L. (2017). Data-driven system to predict academic grades and dropout. PLoS one, 12(2), e0171207.
    Rutherford, F. J., & Ahlgren, A. (1991). Science for all Americans: Oxford university press.
    Sakamoto, Y., Okamoto, S., Shimizu, K., Araki, Y., Hirakawa, A., & Wakabayashi, T. (2017). Hands-on simulation versus traditional video-learning in teaching microsurgery technique. Neurologia medico-chirurgica, 57(5), 238-245.
    Salmi, H., Thuneberg, H., & Vainikainen, M.-P. (2017). Learning with dinosaurs: a study on motivation, cognitive reasoning, and making observations. International Journal of Science Education, Part B, 7(3), 203-218.
    Samarakou, M., Fylladitakis, E. D., Früh, W.-G., Hatziapostolou, A., & Gelegenis, J. J. (2015). An Advanced eLearning Environment Developed for Engineering Learners. International Journal of Emerging Technologies in Learning, 10(3).
    Sanders, M. (2009). Integrative STEM education: primer. The Technology Teacher, 68(4), 20-26.
    Sanders, M. E. (2008). Stem, stem education, stemmania.
    Sarafianos, N., Boteanu, B., Ionescu, B., & Kakadiaris, I. A. (2016). 3D Human pose estimation: A review of the literature and analysis of covariates. Computer Vision and Image Understanding, 152, 1-20. doi:https://doi.org/10.1016/j.cviu.2016.09.002
    Schiaffino, S., Garcia, P., & Amandi, A. (2008). eTeacher: Providing personalized assistance to e-learning students. Computers & Education, 51(4), 1744-1754.
    Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
    Scruggs, T. E., & Mastropieri, M. A. (1993). Current approaches to science education: Implications for mainstream instruction of students with disabilities. Remedial and Special Education, 14(1), 15-24.
    Slayter, E., & Higgins, L. M. (2018). Hands-On Learning: A Problem-Based Approach to Teaching Microsoft Excel. College Teaching, 66(1), 31-33.
    Spikol, D., Ruffaldi, E., Dabisias, G., & Cukurova, M. (2018). Supervised machine learning in multimodal learning analytics for estimating success in project‐based learning. Journal of Computer Assisted Learning, 34(4), 366-377.
    Steels, L., & López de Mantaras, R. (2018). The Barcelona declaration for the proper development and usage of artificial intelligence in Europe. AI Communications, 31(6), 485-494.
    Stohr‐Hunt, P. M. (1996). An analysis of frequency of hands‐on experience and science achievement. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33(1), 101-109.
    Swaminathan, S., & Schellenberg, E. G. (2014). 15 Arts education, academic achievement and cognitive ability.
    Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946.
    Thuneberg, H., Salmi, H., & Fenyvesi, K. (2017). Hands-on math and art exhibition promoting science attitudes and educational plans. Education Research International, 2017.
    Thuneberg, H. M., Salmi, H. S., & Bogner, F. X. (2018). How creativity, autonomy and visual reasoning contribute to cognitive learning in a STEAM hands-on inquiry-based math module. Thinking Skills and Creativity, 29, 153-160. doi:https://doi.org/10.1016/j.tsc.2018.07.003
    Ting, Y.-L., & Tai, Y. (2019). Tackling the challenge of hands-on learning from cognitive perspective. Paper presented at the International Cognitive Cities Conference.
    Tseng, K.-H., Chang, C.-C., Lou, S.-J., & Chen, W.-P. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. International Journal of Technology and Design Education, 23(1), 87-102.
    Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the turing test (pp. 23-65): Springer.
    Uddin, M. Z., Hassan, M. M., Alsanad, A., & Savaglio, C. (2020). A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare. Information Fusion, 55, 105-115.
    Waldrop, M. M. (2015). Why we are teaching science wrong, and how to make it right. Nature News, 523(7560), 272.
    Walsh, K. R., Hoque, M. T., & Williams, K. H. (2017). Human Machine Learning Symbiosis. Journal of Learning in Higher Education, 13(1), 55-62.
    Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2021). Scaled-yolov4: Scaling cross stage partial network. Paper presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
    Wang, M., Jia, H., Sugumaran, V., Ran, W., & Liao, J. (2010). A web-based learning system for software test professionals. IEEE Transactions on Education, 54(2), 263-272.
    White, D. W. (2014). What is STEM education and why is it important. Florida Association of Teacher Educators Journal, 1(14), 1-9.
    Winner, E., Goldstein, T. R., & Vincent-Lancrin, S. (2013). Art for art's sake?: The impact of arts education: OECD publishing.
    Yakman, G. (2010). What is the point of STE@ M?–A Brief Overview. Steam: A Framework for Teaching Across the Disciplines. STEAM Education, 7.
    Yakman, G., & Lee, H. (2012). Exploring the exemplary STEAM education in the US as a practical educational framework for Korea. Journal of the korean Association for Science Education, 32(6), 1072-1086.
    Yang, L., Ma, R., Zhang, H. M., Guan, W., & Jiang, S. (2018). Driving behavior recognition using EEG data from a simulated car-following experiment. Accident Analysis & Prevention, 116, 30-40.
    Yoon, S., Byun, S., & Jung, K. (2018). Multimodal speech emotion recognition using audio and text. Paper presented at the 2018 IEEE Spoken Language Technology Workshop (SLT).
    Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. doi:10.1186/s41239-019-0171-0
    Zhao, H., Li, G., & Feng, W. (2018). Research on application of artificial intelligence in medical education. Paper presented at the 2018 International Conference on Engineering Simulation and Intelligent Control (ESAIC).
    Zheng, Y., Gao, Z., Wang, Y., & Fu, Q. (2020). MOOC Dropout Prediction Using FWTS-CNN Model Based on Fused Feature Weighting and Time Series. IEEE Access, 8, 225324-225335.
    Ziaeefard, S., Miller, M. H., Rastgaar, M., & Mahmoudian, N. (2017). Co-robotics hands-on activities: A gateway to engineering design and STEM learning. Robotics and Autonomous Systems, 97, 40-50. doi:https://doi.org/10.1016/j.robot.2017.07.013
    Zuga, K. (2009). Background and History of the STEM Movement. The overlooked STEM

    無法下載圖示 校內:2026-09-15公開
    校外:2026-09-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE