| 研究生: |
潘泰宇 Pan, Tai-Yu |
|---|---|
| 論文名稱: |
以第一原理分子動力學模擬探討電極與電解液介面對於鋰離子電池層狀正極材料之影響 First-principles molecular dynamics simulations of the influence of electrode/electrolyte interface on layered cathode materials in lithium-ion batteries |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 第一原理 、分子動力學模擬 、鋰離子電池 、三元層狀正極 、電極與電解液介面 |
| 外文關鍵詞: | First-principles calculation, molecular dynamics simulations, lithium ion batteries, ternary layered cathode materials, electrode/electrolyte interface |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子電池具有電容量高、能量密度高、重量輕等優點,經常被組裝成電池模組,做為電動車的動力來源使用,以提升電動車的續航力。鋰離子電池正極材料的選用,主導了電池的工作電壓與電容值的表現,而層狀結構的LiCoO2與LiNixCoyMn1-x-yO2,由於具有相當優異的理論電容量,已經普遍被商業化使用,然而,在過度充放電的情況下,層狀正極材料會有結構變化與過渡金屬原子溶出的現象產生,導致電池電容量的衰退,限制了電池能夠穩定運作的電壓、電容量範圍。
電極與電解液間介面扮演著鋰離子進出正極材料重要門戶的角色,不僅是正極材料中鋰含量變化最大的區塊,同時也是過渡金屬原子溶出現象所發生的區域,故介面間所發生的反應同時也深深地影響著鋰離子電池的表現。
為探討目前鋰離子電池正極材料與電解液介面間所發生的反應,本研究利用第一原理理論計算的方式,建立出穩定的LiNi1/3Co1/3Mn1/3O2層狀正極表面模型,與EC、DMC、ADM等不同電解液系統模型,將兩者結合成電極與電解液介面模型,透過第一原理分子動力學模擬的方式,觀察介面模型在333K溫度條件下所發生的介面反應,並分析當介面模型持溫平衡後,模型中電解液分子、過渡金屬原子的電荷變化與結構變化,試圖找出有助於改善層狀正極材料結構穩定性的方法。
電荷分析的結果顯示,當鋰離子電池充電時,LiNi1/3Co1/3Mn1/3O2正極內部(塊材模型)主要發生電荷改變的元素為鎳跟鈷,錳原子基本維持在帶有高電荷數的狀態不受影響;反觀在LiNi1/3Co1/3Mn1/3O2材料最表面的區域,鎳、鈷原子所帶的電荷數基本與塊材模型中的狀態相同,錳原子則明顯出現了電荷數下降的情形,若與實驗上的結論相連結,價數下降的現象代表著錳原子溶入電解液的機率相對提高,對於層狀材料的結構穩定性有著不好的影響。本研究發現當LiNi1/3Co1/3Mn1/3O2正極表面有電解液分子的出現與吸附,最表層錳原子所帶的電荷數會有回升至接近塊材模型狀態之趨勢,電解液分子有穩定模型表面結構的現象。
若從過渡金屬與鄰近氧原子所形成的MO6八面體(M=Ni, Co, Mn)結構中,鎳氧、鈷氧、錳氧鍵長改變的角度進行分析,表面模型內層的MO6八面體基本維持與塊材模型狀態相同的鍵結長度,但模型最表層的鎳氧平均鍵長卻有明顯縮短的現象,有機會導致模型表面因為出現局部結構扭曲的現象,而在交界區域有應力的產生;電解液系統的出現與吸附,則有緩解表面模型內外層MO6鍵長差異的效果,有機會助於層狀材料表面結構穩定性之維持。
LiNi1/3Co1/3Mn1/3O2 (NMC) is a popular cathode material with high theoretical capacity and working voltage in Li-ion batteries. However, after extensive cycling, Li-ion batteries usually suffer from capacity fading issue, which might be related to irreversible reactions such as phase transformation and dissolution of transition metal ions in the electrode/electrolyte interface region of cathode materials.
In the present study, first-principles molecular dynamics simulation was applied to investigate the electrode/electrolyte interface between the (012) and (104) surface of NMC cathode and different electrolyte systems, e.g. EC, DMC and ADM with 1M LiPF6. NMC bulk and surface models with different Li concentration were also introduced to mimic the charging process of cathode materials. All the models were kept at 333K for several picoseconds until they reached equilibrium state.
With the results of charge analysis, the presence and adsorption of electrolyte molecules on NMC surface could stabilize the charge number of surface Mn ions and prevent the leaching of transition metal ions. By calculating the average bond length between the center metal ion and neighboring O atoms in MO6 octahedron (M=Ni, Co, Mn) in each model, the results revealed that the electrolytes could decrease the M-O bond length difference between outermost layers and the middle region of NMC surface model. Such circumstance might have the effect on stabilizing the surface structure of NMC. The results showed that the existence of electrolytes in the electrode/electrolyte interface could help to stabilize NMC surface.
1. Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
2. Mizushima, K., et al., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
3. Reimers, J.N. and J.R. Dahn, Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2. Journal of The Electrochemical Society, 1992. 139(8): p. 2091-2097.
4. Bak, S.M., et al., Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl Mater Interfaces, 2014. 6(24): p. 22594-601.
5. Zhang, J.-N., et al., Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Materials, 2018. 14: p. 1-7.
6. Han, G., et al., The Cooperative Effect of Vinylene Carbonate and 1, 3-Propane Sultone on the Elevated Temperature Performance of Lithium Ion Batteries. Int. J. Electrochem. Sci, 2012. 7: p. 12963-12973.
7. Park, G., et al., The important role of additives for improved lithium ion battery safety. Journal of Power Sources, 2009. 189(1): p. 602-606.
8. Gauthier, M., et al., Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights. The Journal of Physical Chemistry Letters, 2015. 6(22): p. 4653-4672.
9. Qian, Y., et al., Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode. Journal of Power Sources, 2016. 329: p. 31-40.
10. Zucker, R.V., et al., New software tools for the calculation and display of isolated and attached interfacial-energy minimizing particle shapes. Journal of Materials Science, 2012. 47(24): p. 8290-8302.
11. Kramer, D. and G. Ceder, Tailoring the Morphology of LiCoO2: A First Principles Study. Chemistry of Materials, 2009. 21(16): p. 3799-3809.
12. Garcia, J.C., et al., Surface Structure, Morphology, and Stability of Li(Ni1/3Mn1/3Co1/3)O2 Cathode Material. The Journal of Physical Chemistry C, 2017. 121(15): p. 8290-8299.
13. Tamura, T., M. Kohyama, and S. Ogata, Combination of first-principles molecular dynamics and XANES simulations for LiCoO2-electrolyte interfacial reactions in a lithium-ion battery. Physical Review B, 2017. 96(3): p. 035107.
14. Leung, K., First-Principles Modeling of the Initial Stages of Organic Solvent Decomposition on LixMn2O4(100) Surfaces. The Journal of Physical Chemistry C, 2012. 116(18): p. 9852-9861.
15. Tebbe, J.L., T.F. Fuerst, and C.B. Musgrave, Degradation of Ethylene Carbonate Electrolytes of Lithium Ion Batteries via Ring Opening Activated by LiCoO2 Cathode Surfaces and Electrolyte Species. ACS Appl Mater Interfaces, 2016. 8(40): p. 26664-26674.
16. Xu, S., et al., Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O2 Cathode Surface. ACS Applied Materials & Interfaces, 2017. 9(24): p. 20545-20553.
17. Tornheim, A., et al., Effect of electrolyte composition on rock salt surface degradation in NMC cathodes during high-voltage potentiostatic holds. Nano Energy, 2019. 55: p. 216-225.
18. Tornheim, A., et al., Decomposition of Phosphorus-Containing Additives at a Charged NMC Surface through Potentiostatic Holds. Journal of The Electrochemical Society, 2019. 166(4): p. A440-A447.
19. Born, M. and J.R. Oppenheimer, On the quantum theory of molecules. Сборник статей к мультимедийному электронному учебно-методическому комплексу по дисциплине «физика атома и атомных явлений»/отв. ред. Шундалов МБ; БГУ, Физический факультет, 1927.
20. Thomas, L.H., The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 1927. 23(5): p. 542-548.
21. Fermi, E., Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend. Accad. Naz. Lincei, 1927. 6(602-607): p. 32.
22. Dirac, P., Cambridge Philos. Soc, 1930. 26: p. 376.
23. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
24. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
25. Perdew, J.P. and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 1981. 23(10): p. 5048-5079.
26. Langreth, D.C. and M.J. Mehl, Beyond the local-density approximation in calculations of ground-state electronic properties. Physical Review B, 1983. 28(4): p. 1809-1834.
27. Perdew, J.P., et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992. 46(11): p. 6671-6687.
28. Payne, M.C., et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097.
29. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990. 41(11): p. 7892-7895.
30. Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953-17979.
31. Liechtenstein, A.I., V.I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Physical Review B, 1995. 52(8): p. R5467-R5470.
32. Dudarev, S.L., et al., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B, 1998. 57(3): p. 1505-1509.
33. Zhou, F., et al., First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Physical Review B, 2004. 70(23): p. 235121.
34. Cococcioni, M. and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Physical Review B, 2005. 71(3).
35. Wang, L., T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework. Physical Review B, 2006. 73(19).
36. Jain, A., et al., Formation enthalpies by mixing GGA and GGA+Ucalculations. Physical Review B, 2011. 84(4).
37. Rydberg, H., et al., Tractable nonlocal correlation density functionals for flat surfaces and slabs. Physical Review B, 2000. 62(11): p. 6997-7006.
38. Rydberg, H., et al., Van der Waals Density Functional for Layered Structures. Physical Review Letters, 2003. 91(12): p. 126402.
39. Dion, M., et al., Van der Waals Density Functional for General Geometries. Physical Review Letters, 2004. 92(24): p. 246401.
40. Klimeš, J., D.R. Bowler, and A. Michaelides, Chemical accuracy for the van der Waals density functional. Journal of Physics: Condensed Matter, 2009. 22(2): p. 022201.
41. Klimeš, J., D.R. Bowler, and A. Michaelides, Van der Waals density functionals applied to solids. Physical Review B, 2011. 83(19): p. 195131.
42. Tsai, P.-c., et al., Ab initio study of sodium intercalation into disordered carbon. Journal of Materials Chemistry A, 2015. 3(18): p. 9763-9768.
43. Iftimie, R., P. Minary, and M.E. Tuckerman, Ab initio molecular dynamics: Concepts, recent developments, and future trends. Proceedings of the National Academy of Sciences, 2005. 102(19): p. 6654-6659.
44. Car, R. and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory. Physical Review Letters, 1985. 55(22): p. 2471-2474.
45. Verlet, L., Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 1967. 159(1): p. 98-103.
46. Swope, W.C., et al., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of chemical physics, 1982. 76(1): p. 637-649.
47. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 1984. 81(1): p. 511-519.
48. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985. 31(3): p. 1695-1697.
49. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50.
50. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758-1775.
51. Koyama, Y., et al., Crystal and electronic structures of superstructural Li1−x[Co1/3Ni1/3Mn1/3]O2 (0≤x≤1). Journal of Power Sources, 2003. 119-121: p. 644-648.
52. Park, M.S., First-principles study of native point defects in LiNi 1/3 Co 1/3 Mn 1/3 O 2 and Li 2 MnO 3. Physical Chemistry Chemical Physics, 2014. 16(31): p. 16798-16804.
53. Ohzuku, T. and Y. Makimura, Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry Letters, 2001. 30(7): p. 642-643.
54. Tasker, P.W., The stability of ionic crystal surfaces. Journal of Physics C: Solid State Physics, 1979. 12(22): p. 4977-4984.
55. Chen, Y.-Q., et al., An electrolyte additive with boron-nitrogen-oxygen alkyl group enabled stable cycling for high voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. Journal of Power Sources, 2020. 477.
56. Hunter, J.C., Preparation of a new crystal form of manganese dioxide: λ-MnO2. Journal of Solid State Chemistry, 1981. 39(2): p. 142-147.
57. Tarascon, J.M., et al., Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2 O 4. Journal of The Electrochemical Society, 1994. 141(6): p. 1421-1431.
58. Jang, D.H., Y.J. Shin, and S.M. Oh, Dissolution of Spinel Oxides and Capacity Losses in 4 V Li / Li x Mn2 O 4 Cells. Journal of The Electrochemical Society, 1996. 143(7): p. 2204-2211.
59. Xia, Y. and M. Yoshio, An Investigation of Lithium Ion Insertion into Spinel Structure Li‐Mn‐O Compounds. Journal of The Electrochemical Society, 1996. 143(3): p. 825-833.
60. Gallus, D.R., et al., The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material. Electrochimica Acta, 2014. 134: p. 393-398.
61. Buchberger, I., et al., Aging Analysis of Graphite/LiNi1/3Mn1/3Co1/3O2 Cells Using XRD, PGAA, and AC Impedance. Journal of The Electrochemical Society, 2015. 162(14): p. A2737-A2746.
62. Zheng, J., et al., Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process. Nano Letters, 2013. 13(8): p. 3824-3830.
63. Sahore, R., et al., Revisiting the Mechanism Behind Transition-Metal Dissolution from Delithiated LiNixMnyCozO2 (NMC) Cathodes. Journal of The Electrochemical Society, 2020. 167(2): p. 020513.
校內:2025-10-03公開