| 研究生: |
沈國榮 Shen, Kuo-Jung |
|---|---|
| 論文名稱: |
模擬磁致伸縮複合材料之非線性黏彈行為 Modeling of Nonlinear Viscoelastic Behavior of Magnetostrictive Composites |
| 指導教授: |
林建宏
Lin, Chien-hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 磁致伸縮複合材料 、黏彈性 、微觀力學 、時間相關響應 、非線性磁熱彈耦合 |
| 外文關鍵詞: | Magnetostrictive composites, viscoelasticity, micromechanics, time-dependent response, nonlinear magneto-thermo-elastic coupling |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一個基於微觀力學的本構模型方法,用於分析由主動磁致伸縮材料及黏彈性聚合物基質所組成的複合材料之整體非線性及時變響應。其中,磁致伸縮的加強材在施加大驅動磁場的情況下表現出明顯的非線性響應,而聚合物則表現出明顯的非線性黏彈性行為,特別是在高溫下操作。因此,磁致伸縮複合材料的整體響應可能具有明顯的時變性。為磁致伸縮複合材料制定了簡化的單位晶格微觀力學模型,用於求得微觀局部場變量及宏觀複合材料外加場變量的線性映射矩陣-concentration tensors。由於這些成分的材料非線性應用到線性的微觀力學關係式會有不相容的狀況,因此首先利用線性化的本構關係來獲得磁致伸縮複合材料總體響應的猜值,然後透過迭代方法來校正線性化非線性響應的誤差。本研究呈現了三種複合材料系統的數值模擬結果,分別是磁致伸縮薄板、長纖維和顆粒嵌入非線性黏彈基質中。將複合材料的預測響應與文獻中所提供的實驗數據進行比較,並進行參數研究,以探討加強材材料的幾何形狀、成分比例以及邊界條件對磁致伸縮複合材料整體時變性響應的影響。
A constitutive modeling methodology based on micromechanics for analyzing the overall nonlinear and time-dependent responses of a viscoelastic polymer medium reinforced by active magnetostrictive reinforcements is proposed in this study. The magnetostrictive fillers exhibit significant nonlinear response under large magnetic driving fields, while the polymer is experienced pronounced nonlinear viscoelastic behavior particularly operated under an elevated temperature. Therefore, the overall responses of the magnetostrictive composites can be significant time-dependent. A simplified unit-cell micromechanics model is formulated for the magnetostrictive composites in order to determine the concentration tensors that relate the local field variables to the prescribed loadings on the composites. Because of the material nonlinearity of these constituents, linearized constitutive relations are first utilized for obtaining the trial overall responses of the magnetostrictive composites followed by an iterative scheme in order to correct errors from linearizing the nonlinear responses. Numerical results are presented for three composite systems, i.e., magnetostrictive thin films, long fibers and particles embedded in a nonlinear viscoelastic matrix. The predicted responses of the composites are compared with the experimental data available in literatures, and parametric studies are also conducted in order to reveal the effect of inhomogeneity geometry and compositions, and prescribed boundary conditions on the overall time-dependent responses of the magnetostrictive composites.
1. Aboudi, J., X. Zheng, and K. Jin. 2014. “Micromechanics of Magnetostrictive Composites,” Int. J. Eng. Sci., 81:82-99.
2. Altin. G., K. K. Ho, C. P. Henry, and G. P. Carman. 2007.‘‘Static properties of crystallographically aligned Terfenol-D/polymer composites,’’ J. Appl. Phys.,101(3):033537.
3. Anjanappa, M., and Y. Wu. 1997. “Magnetostrictive Particulate Actuators: Configuration, Modeling and Characterization,” Smart Mater. Struct., 6:393-402.
4. Armstrong, W. D. 2000. ‘‘Nonlinear behavior of magnetostrictive particle actuated composite materials,’’ J. Appl. Phys., 87(6):3027–3031.
5. Bulte, D. P., and R. A. Langman. 2002. ‘‘Origins of the magnetomechanical effect,’’ J. Magn. Magn. Mater., 251(2):229-243.
6. Carman, G., and M. Mitrovic. 1995. “Nonlinear Constitutive Relations for Magnetostrictive Materials with Applications to 1-D Problems,” J. Intel. Mat. Syst. Str., 6(5):673-683.
7. Clark, A. E. 1992. ‘‘Giant magnetostriction materials from cryogenic temperatures to 250°C,’’ Proc. SPIE., 1543:374-381.
8. Ferry, J. D. Viscoelastic Properties of Polymers. 3rd Ed., NewYork: John Wiley & Sons, 1980.
9. Guan, X., X. Dong, and J. Ou. 2009. “Predicting Performance of Polymer-bonded Terfenol-D Composites Under Different Magnetic Fields,” J. Magn. Magn. Mater., 321(18):2742-2748.
10. Haj-Ali, R. M., and A. H. Muliana. 2004. “Numerical Finite Element Formulation of the Schapery Non‐linear Viscoelastic Material Model,” Int. J. Numer. Meth. Eng., 59(1):25-45.
11. Hogea, C. S., and W. D. Armstrong. 2002. “The Time-dependent Magneto-visco-elastic Behavior of a Magnetostrictive Fiber Actuated Viscoelastic Polymer Matrix Composite,” J. Acoust. Soc. Am., 112(5 Pt 1):1928-1936.
12. Herbst, J. F., T. W. Capehart, and F. E. Pinkerton. 1997. “Estimating the Effective Magnetostriction of a Composite: A Simple Model,” Appl. Phys. Lett., 70(22):3041-3043.
13. Hill, R. 1965. “A Self-consistent Mechanics of Composite Materials,” J. Mech. Phys. Solids, 13(4):213-222.
14. Ho, K. K., C. P. Henry, G. Altin, and G. P. Carman. 2006. ‘‘Crystallographically alighned Terfenol-D/polymer composites for a hybrid sonar device,’’ Integr. Ferroelectr., 83(1):121-138.
15. Jiles, D. C., and J. B. Thoelke. 1995. “Magnetization and Magnetostriction in Terbium–Dysprosium–Iron Alloys,” Phys. Status Solidi A, 147(2):535-551.
16. Kuo, H., and C. Peng. 2013. “Magnetoelectricity in Coated Fibrous Composites of Piezoelectric and Piezomagnetic phases,” Int. J. Eng. Sci., 62:70-83.
17. McKnight, G. P., and G. P. Carman. 2001. ‘‘Large magnetostriction in Terfenol-D particulate composites with preferred [112] orientation,’’ Proc. SPIE., 4333:178-183.
18. Moffett, M. B., A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughlin. 1991. “Characterization of Terfenol-D for Magnetostrictive Transducers,” J. Acoust. Soc. Am., 89(3):1448-1455.
19. Muliana, A., and K. A. Khan. 2008. “A Time-integration Algorithm for Thermo-rheologically Complex Polymers,” Comp. Mater. Sci.,41(4):576-588.
20. Nan, C., and G. J. Weng. 1999. “Influence of Microstructural Features on the Effective Magnetostriction of Composite Materials,” Phys. Rev. B, 60(9):6723-6730.
21. Newacheck, S., and G. Youssef. 2019. “Synthesis and Characterization of Polarized Novel 0–3 Terfenol-D/PVDF-TrFE Composites,” Compos. Part B-Eng., 172:97-102.
22. Peretz, D., and Y. Weitsman. 1982. “Nonlinear Viscoelastic Characterization of FM‐73 Adhesive,” J. Rheol., 26(3):245-261.
23. Peretz, D., and Y. Weitsman. 1983. “The Nonlinear Thermoviscoelastic Characterizations of FM‐73 Adhesives,” J. Rheol., 27(2):97-114.
24. Sadkin, Y., and J. Aboudi. 1989. ‘‘Viscoelastic behavior of thermo-rheologically complex resin matrix composites,’’ Compos. Sci. Technol., 36(4):351-365.
25. Schapery, R. A. 1969. ‘‘On the characterization of nonlinear viscoelastic materials,’’ Polym. Eng. Sci., 9(4):295-310.
26. Schapery, R. A. 1974. ‘‘Viscoelastic behavior and analysis of composite materials,’’ Compos. Mater., 5:85-168.
27. Taylor, R. L., K. S. Pister, and G. L. Goudreau. 1970. ‘‘Thermomechanical analysis of viscoelastic solids,’’ Int. J. Numer. Methods. Eng., 2(1):45-59.
28. Thomas, O. J., S. C. Busbridge, and G. J. Tomka. 2004. “Magnetostrictive 1-3 Composites with Internal Field Biasing,” IEEE T. Magn., 40(4):2763-2765.
29. Verhoeven, J. D., J. E. Ostenson, E. D. Gibson, and O. D. McMasters. 1989. ‘‘The effect of composition and magnetic heat treatment on the magnetostriction of TbxDy-xFey twinned single crystals,’’ J. Appl. Phys., 66(2):772-779.
30. Yu, W., and T. Tang. 2007. “Variational Asymptotic Method for Unit Cell Homogenization of Periodically Heterogeneous Materials,” Int. J. Solids Struct., 44(11-12):3738-3755.
31. Zhou, Y., and F. G. Shin. 2005. “Modeling of Magnetostriction in Particulate Composite Materials,” IEEE T. Magn., 41(6):2071-2076.
32. Zhong, Y., L. Chen, W. Yu, and X. Zhou. 2013. “Variational Asymptotic Micromechanics Modeling of Heterogeneous Magnetostrictive Composite Materials,” Compos. Struct., 106:502-509.